

P
A

D
-T

-M
:

3
5
7
4

.3
2
5

9
.0

2
/0

1
.1

0
/C

I/
1
/E

N

R&S®VISA
User Manual

 1700.0232.01 – 03

U
s
e

r
M

a
n

u
a

l

T
e

s
t
&

 M
e

a
s
u

re
m

e
n

t

The R&S VISA makes use of the VISA Shared Components by the IVI® Foundation.

IVI Foundation Copyright Notice

Content from the IVI specifications reproduced with permission from the IVI Foundation.

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The IVI Foundation and its member companies shall not be liable for errors contained herein or for

incidental or consequential damages in connection with the furnishing, performance, or use of this material.

© 2020 Rohde & Schwarz GmbH & Co. KG

Muehldorfstr. 15, 81671 Munich, Germany

Phone: +49 89 41 29 - 0

Fax: +49 89 41 29 12 164

E-mail: info@rohde-schwarz.com

Internet: http://www.rohde-schwarz.com/rsvisa

Subject to change – Data without tolerance limits is not binding.

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG.

Trade names are trademarks of the owners.

The following abbreviations are used throughout this manual: R&S® VISA is abbreviated as R&S VISA.

mailto:info@rohde-schwarz.com
http://www.rohde-schwarz.com/rsvisa

VISA Introduction

User Manual 1700.0232.01 - 04 3

1 Contents

1 INTRODUCTION ... 5
2 CONVENTIONS USED IN THE DOCUMENTATION ... 6
3 QUICK-START EXAMPLE ... 7

3.1 CREATING A VISUAL STUDIO SOLUTION ... 7

3.2 CREATING AN XCODE PROJECT FOR MAC ... 7

3.3 COMPILING THE EXAMPLE ON LINUX ... 7

3.4 STRUCTURE OF THE EXAMPLE ... 8

3.5 USING PYVISA WITH LINUX ... 9

4 RSVISATESTER ... 10
4.1 MAIN WINDOW .. 10

4.2 TESTS .. 11

4.3 FIND RESOURCE DIALOG .. 11

4.4 CHOOSE VISA IMPLEMENTATION DIALOG .. 12

5 RSVISATRACETOOL ... 13
5.1 MAIN WINDOW .. 13

5.2 RECORD FILTER ... 15

5.3 EDIT VIEW FILTER DIALOG .. 15

6 RSVISACONFIGURE .. 17
6.1 MAIN WINDOW .. 17

6.2 FIND RESOURCES DIALOG .. 18

6.3 RESOURCE STRING COMPOSER .. 18

6.4 PROPERTY DIALOG ... 19

7 DEVELOPING WITH THE R&S VISA .. 20
7.1 SWITCHING BETWEEN VISA IMPLEMENTATIONS .. 20

7.1.1 Windows .. 20

7.1.2 OS X .. 20

7.2 CMAKE SUPPORT ... 21

8 VISA.NET .. 22
8.1 USING OF THE IVI VISA.NET GLOBAL RESOURCE MANAGER 23

8.2 DIRECT USE OF THE R&S VISA.NET RESOURCE MANAGER 24

9 VISA C LIBRARY .. 25
9.1 STRING FORMATS ... 25

9.1.1 VISA Address Strings .. 25

9.1.2 viFindRsrc Expressions .. 26

9.1.3 Format String for viPrintf functions .. 28

9.1.4 Format String for viScanf functions ... 35

9.2 API FUNCTIONS .. 40

9.2.1 viAssertTrigger .. 40

9.2.2 viBufRead .. 42

9.2.3 viBufWrite .. 43

9.2.4 viClear ... 44

9.2.5 viClose .. 45

9.2.6 viDisableEvent .. 45

9.2.7 viDiscardEvents .. 46

9.2.8 viEnableEvent ... 47

9.2.9 viFindNext ... 48

9.2.10 viFindRsrc ... 48

VISA Introduction

User Manual 1700.0232.01 - 04 4

9.2.11 viFlush ... 49

9.2.12 viGetAttribute .. 51

9.2.13 viGpibCommand ... 52

9.2.14 viGpibControlATN ... 53

9.2.15 viGpibControlREN ... 54

9.2.16 viGpibPassControl .. 55

9.2.17 viGpibSendIFC .. 56

9.2.18 viInstallHandler .. 56

9.2.19 viLock .. 57

9.2.20 viOpen ... 59

9.2.21 viOpenDefaultRM .. 61

9.2.22 viParseRsrc ... 61

9.2.23 viParseRsrcEx ... 62

9.2.24 viPrintf ... 63

9.2.25 viQueryf ... 64

9.2.26 viRead ... 65

9.2.27 viReadSTB .. 67

9.2.28 viReadToFile ... 68

9.2.29 viScanf .. 69

9.2.30 viSetAttribute ... 70

9.2.31 viSetBuf ... 71

9.2.32 viSPrintf ... 72

9.2.33 viSScanf .. 73

9.2.34 viStatusDesc ... 73

9.2.35 viUninstallHandler ... 74

9.2.36 viUnlock ... 75

9.2.37 viVPrintf ... 75

9.2.38 viVQueryf .. 76

9.2.39 viVScanf .. 77

9.2.40 viVSPrintf .. 78

9.2.41 viVSScanf .. 79

9.2.42 viWaitOnEvent .. 80

9.2.43 viWrite ... 81

9.2.44 viWriteFromFile ... 82

9.3 ATTRIBUTES ... 83

9.3.1 Instrument class: All .. 83

9.3.2 Instrument class: INSTR ... 87

9.3.3 Instrument class: INTFC ... 99

9.3.4 Instrument class: SOCKET ... 103

9.4 EVENTS.. 107

9.4.1 VI_EVENT_SERVICE_REQ ... 107

10 INDEX .. 108

VISA Introduction

User Manual 1700.0232.01 - 04 5

1 Introduction

VISA (Virtual Instrument Software Architecture) is a multivendor I/O software standard

approved by the IVI Foundation.1 It provides a common foundation for the development,

delivery, and interoperability of high-level multivendor system software components,

such as instrument drivers, soft front panels, and application software.

The R&S VISA supports the Ethernet (VXI-11, HiSLIP, RSIB, Raw Socket), Serial (RS-

232) and USB interfaces (USBTMC and R&S®NRP2) on Windows 7 (32/64-bit), Windows

8 (32/64-bit), Windows 10, OS X 10.10 or later, Linux Ubuntu 16.04 or later, and CentOS

7.

The objective of this document is to give a quick-start example (Chapter 3), introduce

the utility applications, and to describe the C interface of the R&S VISA library

(Chapter 8).

The R&S VISA contains three utility applications:

 The RsVisaTester allows to find resources and to communicate with devices.

Most VISA functions can be invoked from this application (Chapter 4).

 With the RsVisaTraceTool all VISA function calls are logged (Chapter 5).

 To define aliases and resource list or to configure the conflict manager the

RsVisaConfigure application is used (Chapter 6).

Related Documents are:

 VPP-4.3: The VISA Library

 VPP-4.3.5: VISA Shared Components

 VPP-4.3.6 VISA Implementation Specification for .NET

 1MA208: Fast Remote Instrument Control with HiSLIP

1 http://www.ivifoundation.org

2 R&S®NRP support is only available for Windows and requires installation of the NRP Toolkit

http://www.ivifoundation.org/docs/vpp43_2014-06-19.pdf
http://www.ivifoundation.org/docs/vpp435_2015-02-11.pdf
http://www.ivifoundation.org/docs/vpp436_2016-06-07.pdf
http://www.rohde-schwarz.com/en/applications/fast-remote-instrument-control-with-hislip-application-note_56280-30881.html
http://www.ivifoundation.org/
https://www.rohde-schwarz.com/software/nrp-toolkit/

VISA Conventions Used in the Documentation

User Manual 1700.0232.01 - 04 6

2 Conventions Used in the

Documentation

The following conventions are used throughout the R&S VISA User Manual:

Typographical conventions

Convention Description

“Graphical user interface elements”

All names of graphical user interface elements both on the screen

and on the front and rear panels, such as dialog boxes, softkeys,

menus, options, buttons etc., are enclosed by quotation marks.

“KEYS”
Key names are written in capital letters and enclosed by quotation

marks.

Input Input to be entered by the user is displayed in italics.

File names, commands,

program code

File names, commands, coding samples and screen output are

distinguished by their font.

"Links" Links that you can click are displayed in blue font.

"References"
References to other parts of the documentation are enclosed by

quotation marks.

Other conventions

● Remote commands: Remote commands may include abbreviations to simplify

input. In the description of such commands, all parts that have to be entered are

written in capital letters. Additional text in lower-case characters is for information

only.

R&S VISA Quick-Start Example

User Manual 1700.0232.01 - 04 7

3 Quick-Start Example

This chapter gives a small example how to use the VISA C library. The purpose of the

example is to illustrate how to find and open resources, and how to send simple SCPI

commands from a C++ application. The complete source code of this example can be

found in the RsVisa section of the start menu and in the folder %PUBLIC%\Documents\

Rohde-Schwarz\RsVisa\Samples\C++\IdnSample.

3.1 Creating a Visual Studio Solution

The example contains a Visual Studio 2013 solution. If you want to create a solution

manually or use a different development environment set the include path such that the

visa.h file is found; this is achieved by appending %VXIPNPPATH%WinNT

\RsVisa\include to the include path. Likewise, the linker has to link against the

RsVisa32.lib library which is available in %VXIPNPPATH%WinNT\RsVisa\lib\msc for

32-bit and %VXIPNPPATH64%Win64\RsVisa\lib\msc for 64-bit applications.

3.2 Creating an Xcode project for Mac

Since the example ships with a CMakeLists.txt file, you can use CMake to create an

Xcode project. Open a console and follow these steps to create an Xcode project:

 Create a build folder

 Change into the builder folder

 Execute the command
cmake /Applications/Rohde-Schwarz/Example/C++/IdnSample

Alternatively you may use the CMake GUI application.

Please refer to section 7.2 for more details on the CMake support of the R&S VISA.

3.3 Compiling the example on Linux

Since the example ships with a CMakeLists.txt file, you can use CMake to create

makefiles. Open a console and follow these steps to create makefiles:

 Create a build folder

 Change into the builder folder

 Execute the command
cmake /usr/share/doc/rsvisa/Samples/IdnSample

Alternatively you may use the CMake GUI application.

Please refer to section 7.2 for more details on the CMake support of the R&S VISA

R&S VISA Quick-Start Example

User Manual 1700.0232.01 - 04 8

3.4 Structure of the example

The example implements two classes:

 VisaResourceManager allows to find resources and to connect to devices by

creating objects of the VisaSession class.

 VisaSession provides functions to write and read to an open session.

These classes wrap around the VISA C library calls. For example, creating an object of

VisaResourceManager and invoking the member function findResources would be

similar to the following code snippet:

ViSession rm;

viOpenDefaultRM(&rm);

std::vector <std::string> rsrcList;

ViUInt32 retCnt;

ViFindList vi;

ViChar desc[256];

ViAttrState searchAttributes = VI_RS_FIND_MODE_CONFIG |

VI_RS_FIND_MODE_VXI11 | VI_RS_FIND_MODE_MDNS;

viSetAttribute(rm, VI_RS_ATTR_TCPIP_FIND_RSRC_MODE, searchAttributes);

viFindRsrc(rm, "?*", &vi, &retCnt, desc);

rsrcList.push_back(desc);

for (ViInt16 i = 0; i < static_cast<ViInt16>(retCnt)-1; ++i) {

 viFindNext(vi, desc);

 rsrcList.push_back(desc); }

viClose(vi);

viClose(rm);

The basic steps in this code are:

 Creating a resource manager

 Setting the attributes in order to find network resources. Note that in order for

this feature to be enabled the compiler macro RSVISA_EXTENSION has to be

defined.

 Calling viFindRsrc to initialize the find list, get the number of found resources,

and retrieve the description of the first result; subsequent calls of viFindNext

retrieve all search results.

 Finally the handlers of the search list and of the resource manager are closed.

R&S VISA Quick-Start Example

User Manual 1700.0232.01 - 04 9

3.5 Using PyVISA with Linux

Please refer to the online manuals (e.g. https://pypi.org/project/PyVISA/) how you can

install and use Python scripts with the VISA Library. The following sample script

configures the PyVISA to use the R&S VISA Library directly in Linux:

#!/usr/bin/env python3

import visa

Open VISA Resource-Manager

rm = visa.ResourceManager("/usr/lib/librsvisa.so@ni") #use this for Ubuntu

rm = visa.ResourceManager("/usr/lib64/librsvisa.so@ni") #use this for CentOS

#rm = visa.ResourceManager() #use this for Windows

print(rm)

Show available resources

list = rm.list_resources()

print(list)

dev = rm.open_resource('TCPIP::example.com::hislip0')

#dev.write_termination = '\n' #use this for raw socket connections

#dev.read_termination = '\n' #e.g. TCPIP::example.com::5025::SOCKET

dev.write("*IDN?")

idn = dev.read()

print("IDN:", idn)

dev.close()

https://pypi.org/project/PyVISA/
mailto:/usr/lib/librsvisa.so@ni
mailto:/usr/lib64/librsvisa.so@ni

R&S VISA RsVisaTester

User Manual 1700.0232.01 - 04 10

4 RsVisaTester

The RsVisaTester application provides a simple way to call VISA functions from a PC

application. Furthermore, it is also capable of running tests, which check the

performance or reliability of a channel.

4.1 Main Window

The basic workflow of the RsVisaTester is to first find a resource, connecting, and then

calling the desired VISA functions with their respective parameters. The following list

gives an overview of the VISA functions called (for details of the functions refer to Sec.

9.1):

 “Connect”: viOpen

 “Write”: viWrite

 “Read”: viRead

 “Query”: viWrite and viRead

 “ReadSTB”: viReadSTB

 “Trigger”: viAssertTrigger

 “Clear”: viClear

 “Exclusive Lock” and “Shared Lock”: viLock

 “Unlock”: viUnlock

 “Go to Local” and “Go to Remote”: viGpibControlREN

 “Get Attribute”: viGetAttribute

 “Set Attribute”: viSetAttribute

R&S VISA RsVisaTester

User Manual 1700.0232.01 - 04 11

 “Enabled Event”: viEnabledEvent

 “Discard Event”: viDiscardEvents

 “Disabled Event”: viDisableEvents

 “Wait On Event”: viWaitOnEvent

 “Install Handler”: viInstallHandler

 “Uninstall Handler”: viUninstallHandler

 “Send”: viSendIFC, viGpibCommand or viGpibPassControl

If the “Show Log” checkbox is checked an entry for each VISA function call appears in

the log-view. If if the “Write Log” checkbox is checked the log-view entry is written to the

log file as well. The log-view can be operated in two modes: the “Live Mode” shows only

the most recent messages whereas the “View Mode” allows to scroll the history.

4.2 Tests

In the “Tests” panel of the main window one can start three different kind of tests, testing

two different resources simultaneously:

 Performance Tests: Measures durations of some SCPI commands and data

throughput.

 Stress 4882 Test: Tests reliability of channel by rapidly calling different VISA

functions.

 Stress Mmem Test: Tests if channel is capable of handling large data transfers.

4.3 Find Resource Dialog

This dialog is displayed when clicking on “Find Resource” in the main window.

If you click Refresh button (1), the resource list is refreshed and the available resources

are displayed grouped by devices. The LXI (mDNS) and VXI-11 search are only

R&S VISA RsVisaTester

User Manual 1700.0232.01 - 04 12

available if the R&S VISA is loaded. The text field Find Expression (2) at the top

contains the search expression as defined by the viFindRsrc function (cf. Sec. 9.1.2).

Devices are grouped in the list on the left panel. Use the right Details panel for further

information on LXI devices and select the device under “Selectable devices”. Use the

search text field to quickly filter the current device list and details.

4.4 Choose VISA Implementation Dialog

This dialog can be accessed from the main window by clicking on “Choose Visa

Implementation”.

All available VISA implementations are displayed. After selecting an implementation and

pressing “OK” the current VISA library is unloaded and the selected VISA

implementation is loaded. It is strongly recommended to make sure that there are no

open connections when changing the VISA implementation.

If one chooses the “Default Visa” in the 64-bit Version of the RsVisaTester application

the functionality of the VISA conflict manager is invoked (cf. Sec. 6.4).

At startup the RsVisaTester loads the Rohde & Schwarz VISA implementation.

R&S VISA RsVisaTraceTool

User Manual 1700.0232.01 - 04 13

5 RsVisaTraceTool

The RsVisaTraceTool allows to log the communication between the VISA library and the

PC application. It provides two means of tracing: i) recording to memory and ii) recording

to a file. Recording to memory is a fast way to trace the communication allowing the

definition of flexible filters. However, as the size of the memory is limited only the most

recent VISA commands are kept. For long-time tracing the second mode, recording to a

file, should be employed.

By starting the RsVisaTraceTool multiple times and setting up appropriate filters (Sec.

5.3) one can trace several PC applications independently.

5.1 Main Window

The main window shows a list of the captured commands and allows to control the

recording. The labeled buttons provide the following functionality:

1. Toggle Start/Stop of recording to memory.

2. Toggle Start/Stop of recording to file.

3. Activates/Deactivates a pause. If a pause is active the recording continues but

the list of captured commands is not refreshed. The menu item “View -> Pause

on error” activates the pause if a VISA call returns with an error status.

Deactivating the pause clears the list of captured commands.

4. Save the list of captured commands to a file.

5. Copy the list of captured commands to the windows clipboard.

6. Clear the list of captured commands.

7. Edit view filters (Sec. 5.3). If view filters are active the color of the icon is

lightblue.

8. When capturing, scroll to the end of the list of captured commands.

9. Select log file.

10. Open destination of log file in windows explorer.

11. Delete log file.

1 2 3 4 5 6 7 8

9 10 11

R&S VISA RsVisaTraceTool

User Manual 1700.0232.01 - 04 14

Notice, that starting and stopping the recording to file or memory starts and stops the

recording of all RsVisaTraceTool instances. However, pause and clear only apply to the

current instance.

The list of captured commands contains the following fields:

 Id: Process independent identifier, which is the same in all RsVisaTraceTool

instances

 Timestamp: Time of the system clock

 Pid: Process ID of the PC application

 Thread: ID of the thread making the VISA call

 Session: VISA session number

 Address: The VISA resource string used for this connection

 Duration: CPU time used by the VISA to execute command.

 Status: Return code of the VISA command.

 Command: VISA command called by the application with all parameters. If a

parameter name is followed by a bracketed number, it is a pointer parameter

and the number indicates the hex-coded memory address.

The first column of the table contains an ID, which is assigned by each process

separately. Therefore, two different processes may assign the same IDs. Columns can

be hidden or shown via a popup-menu accessible by right-clicking on the table header.

In the case of two or more threads (of the same or of different processes) running

simultaneously it may occur that one thread invokes a VISA function while the other

thread is still performing a VISA call, hence both calls are intervened. If between the start

and the end of a VISA call of one thread the start or the end of a VISA call of a different

thread occurs, two lines appear in the list of captured commands: one for the beginning

of the VISA call and one for the ending.

For example, in the screenshot thread 5892 makes a viRead call which takes 11 ms.

Within this timespan thread 5312 makes a viClose call. To indicate that the other thread

makes an operation two lines for viRead appear: one (with no duration and status

information) at the start of the operation and another one, after viClose, at the end.3

The starting message shows an arrow-down and the ending message an arrow-up icon

in the first column. If one selects a message with an arrow symbol the corresponding

starting or ending message is displayed in a bold font type. Furthermore, double-clicking

centers the corresponding line in the view.

If the menu entry “View -> Options -> Collapse same commands” is checked, lines

containing the exact same commands from the same thread are displayed only once.

In this case a tree symbol is shown at the beginning of the line indicating that this line

represents multiple commands. The durations of all collapsed lines are summed up and

3 For the viClose command only one line appears, because this command is not interrupted by another thread.

R&S VISA RsVisaTraceTool

User Manual 1700.0232.01 - 04 15

displayed. Furthermore, a counter preceding the actual command indicates how many

commands were collapsed.

If the menu entry “View -> Options -> Show only string arguments” is checked, not all

the arguments of a VISA call are displayed in the command column, but only string

arguments.

5.2 Record Filter

The record filter dialog is opened by the “Recording -> Configure Filter” menu entry of

the main window.

The filters defined by this dialog are processed in the VISA library. Hence, these filters

are active for recording to memory of all RsVisaTraceTool instances and recording to

file. As the filter is applied before the data is transmitted to the RsVisaTraceTool

application one can save memory space by employing these filters.

If one defines a filter by process ID, only commands originating from the process with

the given PID are recorded. If one defines a filter by message contents only commands

matching the given string are recorded. The string is interpreted as a regular expression.4

5.3 Edit View Filter Dialog

The edit view filter dialog is opened by clicking “button 7”.

4 For details of the regular expression syntax see http://www.cplusplus.com/reference/regex/ECMAScript/

http://www.cplusplus.com/reference/regex/ECMAScript/

R&S VISA RsVisaTraceTool

User Manual 1700.0232.01 - 04 16

The filters defined in this dialog apply to the current view. A convenient way to define

filters is to right-click on the captured commands list of the main window and to use the

popup menu to add a filter.

Each view filter either filters by process id, thread id, session number, VISA resource

string, or a string contained in a command. As a result, it either highlights the commands

or it includes or excludes the commands from the captured commands list. If the filter

type is “exclude” no commands matching the filter are shown in the list. On the other

hand, if there is at least one filter of the “include” type only commands matching an

include-type filter are displayed. The filters are only applied to the current view; hence,

one can change the filters without losing data.

The functionality of the labeled buttons is the following:

12. Adds a filter.

13. Deletes the selected filter.

14. Deletes all filters.

15. Changes the color of the selected filter which is used to highlight matching

commands.

12

13 14

15

R&S VISA RsVisaConfigure

User Manual 1700.0232.01 - 04 17

6 RsVisaConfigure

The purpose of the RsVisaConfigure application is to define a list of

resources - optionally with an alias - and to set GPIB properties. All resource identifiers

are displayed when searching for VISA resources with viFindRsrc. Furthermore, if an

alias is defined the alias can be used instead of the resource string e.g. when accessing

the resource with viOpen.

6.1 Main Window

The screenshot shows the main window of the application. The labeled buttons provide

the following functionality:

1. Add a new resource identifier to the list.

2. Remove the selected identifier from the list.

3. Edit the selected identifier (Sec. 6.3).

4. The selected resource identifier is replaced by an identifier chosen from a list of

available resources (Sec. 0).

5. Edit GPIB and special properties (Sec. 6.4).

6. Save the current configuration.

7. Quit the application.

The resource identifier or alias can be edited by double clicking on the cell or by selecting

the desired row and clicking “button 3”.

1 2 3 4 5 6 7

R&S VISA RsVisaConfigure

User Manual 1700.0232.01 - 04 18

6.2 Find Resources Dialog

This dialog is used to select a VISA resource. It can be accessed by clicking on “button 4”

in the main window or “button 9” in the resource string composer dialog.

By clicking on “button 8” the list of available resources is refreshed. Note, the search for

available resources includes network devices which respond via VXI-11 or mDNS

queries. Therefore, on large networks the search might take some time.

6.3 Resource String Composer

This dialog is used to edit the resource identifier and, optionally, to assign an alias. It is

opened by clicking on “button 3” of the main window.

This dialog provides two ways to edit the VISA resource string: i) the user edits the

resource string freely in the left panel or ii) the fields of the right panel are used to

construct the resource string. When changing any fields of the right panel the resource

string is updated overwriting the current string. Strings constructed by means of the right

panel are guaranteed to be syntactically correct, but are not checked for validity. On the

other hand, if the user edits the string freely no checks are employed.

By clicking on “button 9” the VISA resource string is replaced by an identifier chosen

from a list of available resources (Sec. 0).

9

8

R&S VISA RsVisaConfigure

User Manual 1700.0232.01 - 04 19

6.4 Property Dialog

This dialog is used to edit GPIB properties, change settings of the VISA conflict manager,

and to set the VISA Provider ID. It is opened from the main window by clicking on

“button 5”.

“Button 10” and “button 11” are used to add and remove devices, respectively. The

properties “Device No” and “Primary Address” are edited by double clicking the desired

cell; the property “System Controller” is set by checking the checkbox.

The VISA Conflict Manager provides means to switch between different VISA

implementations and is part of the VISA shared components. Here the user can select

a VISA implementation for each resource type. If a device of this resource is opened,

the conflict manager loads the selected VISA implementation. Furthermore, a preferred

VISA implementation can be defined, which is taken in the case that for a resource type

no specific VISA implementation is selected. If a VISA implementation is disabled, the

conflict manager does not load this VISA implementation. Changes in the Conflict

Manager become effective after clicking “OK”. Note that the Conflict Manager is not

invoked by 32-bit applications linked to the VISA C library.

For the example given in the screenshot, all connections to GPIB devices are handled

by the National Instruments VISA; for connections to all other devices the preferred VISA

is used, which is in this case the R&S VISA.

The VISA provider ID is by default the R&S VISA ID and should only be changed under

special circumstances (e.g. if a third-party software requires a certain VISA provider ID).

The value is returned by the attribute VI_ATTR_RSRC_MANF_ID. For a change of this

property to become effective a restart of the applications using the VISA is required.

10 11

R&S VISA Developing with the R&S VISA

User Manual 1700.0232.01 - 04 20

7 Developing with the R&S VISA

7.1 Switching between VISA implementations

7.1.1 Windows

The R&S VISA provides the proprietary RsVisaLoader.dll file, which is not part of the

VISA standard. This library allows user applications to switch at runtime between VISA

implementations of different vendors. Therefore the RsVisaLoader library forwards all

VISA calls to the vendor specific VISA library. Hence, in addition to all exports of the

visa32.dll library the RsVisaLoader.dll library exports functions to switch between

implementations:

● RsViSetDefaultLibrary: Loads the VISA library of a specific vendor. Call this

function before any other VISA function call.

● RsViUnloadVisaLibrary: Unloads the currently loaded VISA library.

● RsViIsVisaLibraryInstalled: Checks whether the implementation of a specific

vendor is currently available.

For details of usage refer to the header file. The header and lib files, RsVisaLoader.h

and RsVisaLoader.lib, are located in the directories:

 %VXIPNPPATH%WinNT\RsVisa\lib\msc (32-bit)

 %VXIPNPPATH64%Win64\RsVisa\lib\msc (64-bit)

 %VXIPNPPATH%WinNT\RsVisa\include

7.1.2 OS X

The R&S VISA provides a similar mechanism to switch between different VISA

implementation at runtime for OS X as it does for Windows. The main difference is that,

unlike for Windows, for OS X no compiled library is provided. The recommended way to

use the RsVisaLoader features under Mac is to compile the sources directly in your

project. The source files and an example are available at /Applications/Rohde-

Schwarz/RsVisaLoader.

In case you need a library you can use the CMakeLists.txt file in that folder to create an

XCode project which provides one library target. Compiling the XCode project produces

the library against which you have to link your application. However, in this case you

should consider deploying the RsVisaLoader dylib file with your application bundle.

The API for the loader mechanism is defined in the header file /Applications/Rohde-

Schwarz/RsVisaLoader/RsVisaLoaderMac.h. The function calls to switch between

VISA implementations are identical to the Windows API.

R&S VISA Developing with the R&S VISA

User Manual 1700.0232.01 - 04 21

7.2 CMake support

The R&S VISA deploys CMake5 configuration files which let you easily include the R&S

VISA library in your CMake project. An example for this technique is given in the C++

example which is deployed with the R&S VISA.

You can make a VISA library available in your CMake project by adding the line

find_package(RsVisa REQUIRED)

to your CMakeLists.txt file. This command defines the following targets:

 rsvisa::rsvisa Imports the R&S VISA library

 rsvisa::loader Imports the R&S VISA loader (only on Windows)

 rsvisa::visa Imports the standard VISA (visa32.lib/ visa64.lib, only on Windows)

For example, if you want your application to link against the R&S VISA library you have

to add the following line (or similar) to your CMakeLists.txt file:

target_link_libraries(${PROJECT_NAME} rsvisa::rsvisa)

Since the target’s properties already contain the include path to the VISA headers you

do not need to set include directories for the VISA.

It is only recommended to link against the target rsvisa::rsvisa if you need R&S VISA

specific features like device discovery over LAN. If you want to stay flexible and switch

between VISA implementations during runtime you should use the target

rsvisa::loader. However, in most cases applications do not depend on VISA specifics

and in this case it is advisable to link against the default VISA by using the target

rsvisa::visa.

5 cmake.org/

https://cmake.org/

R&S VISA VISA.NET

User Manual 1700.0232.01 - 04 22

8 VISA.NET

R&S VISA.NET is a part of our Windows Developer Installation packet. It offers native

C# interface according the IVI VISA.NET specification

(http://www.ivifoundation.org/specifications/default.aspx VPP-4.3.6).

You can use R&S VISA.NET in two different ways – through Global Resource Manager

(GRM), or directly. The picture below shows the relationship between the R&S

VISA.NET Resource Manager (RM) and the GRM:

As a part of the R&S VISA.NET installation we provide four C# examples, two for each

approach. You can find them here:

Windows Start Menu -> R&S VISA -> Samples -> C#

The examples whose names start with VisaDotNet use the GRM.

The examples starting with RsVisaDotNet with use the RsVisa.NET RM directly.

http://www.ivifoundation.org/specifications/default.aspx

R&S VISA VISA.NET

User Manual 1700.0232.01 - 04 23

8.1 Using of the IVI VISA.NET Global Resource Manager

We recommend this approach, since it is the most universal way supported by all

VISA.NET vendors.

Here, you do not call any vendor-specific VISA.NET implementation. Instead, you call

the GRM with a request to open a session to your resource (instrument).

The GRM is a part of IVI VISA.NET shared components installed together with the

R&S VISA.NET. The assembly is built as Any CPU. In 64-bit Windows it is copied to

both 32-bit and 64-bit paths. You have to add the Ivi.Visa.dll to your project.

File location (64-bit Windows):

c:\Program Files\IVI Foundation\VISA\Microsoft.NET\Framework64\

v2.0.50727\VISA.NET Shared Components x.x.x\Ivi.Visa.dll

File location (32-bit Windows):

c:\Program Files (x86)\IVI Foundation\VISA\Microsoft.NET\Framework64\

v2.0.50727\VISA.NET Shared Components x.x.x\Ivi.Visa.dll

The GRM asks each vendor-specific Resource Manager (RM) if they support the

requested resource. The first RM that answers positively, gets the control over the

session.

Examples using the GRM approach: Start Menu -> R&S VISA -> Samples -> C#

 VisaDotNet_IdnQuery – console application sending *IDN? query

 VisaDotNet_NrpzMeasure – console application that performs a

measurement with R&S NRP-Zxx power sensors

R&S VISA VISA.NET

User Manual 1700.0232.01 - 04 24

8.2 Direct use of the R&S VISA.NET Resource Manager

In some cases, you want to use the vendor-specific implementation directly. The most

common reasons are:

 You want to have more control over the different software components used in

your application

 You want to use a specialty of an implementation that goes beyond the IVI

VISA.NET specification

In our two examples we show the specialty of the R&S VISA.NET resource manager to

be able to find resources via VXI-11 broadcast and mDNS/Bonjour (Start Menu -> R&S

VISA -> Samples -> C#):

 RsVisaDotNet_FindLxi – simple console application searching for all the

instruments discoverable by VXI-11 and mDNS

 RsVisaDotNet_FindLxiWithGui – Windows Forms application searching for all

the discoverable instruments. You can switch VISA implementations between

the R&S VISA.NET and NI VISA.NET (if installed).

Location of the R&S VISA.NET assembly:

R&S VISA.NET assembly is built as Any CPU. In 64-bit Windows the assembly is copied

to both 32-bit and 64-bit paths.

File location (64-bit Windows):

c:\Program Files (x86)\IVI Foundation\VISA\Microsoft.NET\Framework32\

v4.0.30319\RS VISA.NET x.x.x\RohdeSchwarz.Visa.dll

File location (32-bit Windows):

c:\Program Files (x86)\IVI Foundation\VISA\Microsoft.NET\Framework32\

v4.0.30319\RS VISA.NET x.x.x\RohdeSchwarz.Visa.dll

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 25

9 VISA C Library

9.1 String Formats

This section describes the required formats of VISA address strings, search expressions,

and format strings.

9.1.1 VISA Address Strings

The following table shows the grammar for the Address String. Optional string segments

are shown in square brackets (“[]”).

Interface Grammar

ASRL ASRL[board][::INSTR]

TCPIP TCPIP[board]::host_address[::LAN_device_name][::INSTR]

TCPIP TCPIP[board]::host_address[::HiSLIP_device_name[,HiSLIP_port]][::INSTR]

TCPIP TCPIP[board]::host_address::port::SOCKET

USB USB[board]::manufacturer_ID::model_code::serial_number[::USB_interface_number][::INSTR]

RSNRP RSNRP::model_code::serial_number

The ASRL keyword is used to establish communication with an asynchronous serial

(such as RS-232) device. The TCPIP keyword is used to establish communication with

Ethernet instruments. The USB keyword is used to establish communication with USB

instruments.

The default values for optional string segments are shown below.

Optional String Default Value

board 0

LAN_device_name inst0

HiSLIP_device_name hislip0

HiSLIP_port 4880

USB_interface_number lowest numbered relevant interface

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 26

The expressions “address string”, “resource string”, “resource identifier”, or in this

context sometimes just “resource” are used synonymously in this document.

Examples for address string:

 ASRL1::INSTR - serial device located on port 1

 TCPIP0::1.2.3.4::5025::SOCKET - Raw TCP/IP access to port 5025 at the

specified address.

 TCPIP::devicename.company.com::INSTR - TCP/IP device using VXI-11

located at the specified address. This uses the default LAN Device Name of

inst0.

 TCPIP::1.2.3.4::inst0::INSTR - A TCP/IP device using VXI-11 located at

the IP address 1.2.3.4.

 TCPIP::127.0.0.1::hislip0::INSTR - TCP/IP device using HiSLIP located

at IP address 127.0.01.

 USB::0x1234::0x5678::A22-5::INSTR - USB Test & Measurement class

device with manufacturer ID 0x1234, model code 0x5678, and serial number

A22-5. This uses the device’s first available USBTMC interface, usually

number 0.

 USB::0x0AAD::0x0095::104015::INSTR - R&S NRP-Zxx legacy

Powersensor model 0x0095 (NRP-Z86), serial number 104015

 RSNRP::0x0095::104015::INSTR – alias to the abovementioned
USB::0x0AAD::0x0095::104015::INSTR

Ipv6 is only supported in HiSLIP and SOCKET sessions

Examples for IPv6 address string:

 TCPIP::[::1]::hislip0::INSTR - TCP/IP device with IPv6 using HiSLIP on

localhost

 TCPIP::[fe80::ad82:1033:398b:c921]::hislip0::INSTR - TCP/IP device

with IPv6 using HiSLIP

 TCPIP0::[fe80::ad82:1033:398b:c921]::5025::SOCKET - Raw TCP/IP

access with IPv6 to port 5025 at the specified address.

9.1.2 viFindRsrc Expressions

The syntax of the expr parameter of the viFindRsrc command (cf. Sec. 9.2.10) is a

regular expression, which is a string consisting of ordinary characters as well as special

characters. A regular expression is used for specifying patterns to match in a given

string. Given a string and a regular expression, one can determine if the string matches

the regular expression. A regular expression can also be used as a search criterion.

Given a regular expression and a list of strings, one can match the regular expression

against each string and return a list of strings that match the regular expression.

The following two tables define the special characters and literals used in the grammar

rule:

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 27

Character Description Symbol

NL / LF New Line / Line Feed "\n"

HT Horizontal Tab "\t"

CR Carriage Return "\r"

FF Form Feed "\f"

SP Blank Space " "

Literal Definition

white_space NL, LF, HT, CR, FF, SP

digit "0","1".."9"

letter "a","b".."z", "A","B".."Z"

hex_digit "0","1".."9", "a","b".."f", "A","B".."F"

underscore "_"

For regular expression special characters and operators are used as follows:

Special Characters and Operators Meaning

? Matches any one character.

\ Makes the character that follows it an ordinary character instead

of special character. For example, when a question mark follows a

backslash (i.e. '\?'), it matches the '?' character instead of any one

character.

[list] Matches any one character from the enclosed list. A hyphen can

be used to match a range of characters.

[^list] Matches any character not in the enclosed list. A hyphen can be

used to match a range of characters.

* Matches 0 or more occurrences of the preceding character or

expression.

+ Matches 1 or more occurrences of the preceding character or

expression.

exp|exp Matches either the preceding or following expression. The OR

operator “|” matches the entire expression that precedes or

follows it and not just the character that precedes or follows it. For

example, “USB|TCPIP” means “(USB)|(TCPIP)”, not

“US(B|T)CPIP”.

(exp) Grouping characters or expressions.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 28

Some examples are:

Regular Expression Sample Matches

?* Matches all resources.

TCPIP?*INSTR Matches TCPIP0::127.0.0.1::inst0::INSTR,

TCPIP1::192.168.0.1::hislip0::INSTR but not

TCPIP0::1.2.3.4::999::SOCKET

ASRL[0-9]*::?*INSTR Matches ASRL1::INSTR but not

TCPIP::127.0.0.1::INSTR.

(TCPIP|USB)?*INSTR Matches LAN (VXI-11 & HiSLIP) and USBTMC instruments but

not raw socket or serial devices.

?*INSTR Matches all INSTR (device) resources.

RSNRP?* Matches all the R&S NRP-Zxx legacy

9.1.3 Format String for viPrintf functions

The format strings, as presented in this section, are employed in the viPrintf (cf. Sec.

9.2.24) and their derivatives (viQueryf, viSPrintf, viVPrintf, viVSPrintf, and

viVQueryf).

In these commands the parameter writeFmt (or equivalent) string can include regular

character sequences, special formatting characters, and special format specifiers. The

regular characters (including white spaces) are written to the device unchanged. The

special characters consist of “\” (backslash) followed by a character. The format specifier

sequence consists of “%” (percent) followed by an optional modifier (flag), followed by a

format code.

9.1.3.1 Special Formatting Characters

Special formatting character sequences send special characters. The following table lists

the special characters and describes what they send to the device.

Formatting Character Character Sent to Device

\n Sends the ASCII LF character. The END identifier will also be automatically

sent.

\r Sends an ASCII CR character.

\t Sends an ASCII TAB character.

\### Sends the ASCII character specified by the octal value.

\" Sends the ASCII double-quote (") character.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 29

\\ Sends a backslash (“\”) character.

9.1.3.2 Format Specifiers

The format specifiers convert the next parameter in the sequence according to the

modifier and format code, after which, the formatted data is written to the specified

device. The format specifier takes the following syntax:

%[modifiers]format code

where format code specifies the data type in which the argument is represented.

Modifiers are optional codes that describe the target data.

In the following tables, a “d” format code refers to all conversion codes of type integer

(“d”, “I”, “o”, “u”, “x”, and “X”), unless specified as %d only. Similarly, an “f” format code

refers to all conversion codes of type float (“f”, “e”, “E”, “g”, “G”), unless specified as %f

only.

Every conversion command starts with the “%” character and ends with a conversion

character (format code). Between the “%” character and the format code, the following

modifiers can appear in the sequence:

Modifier Supported with

Format Code

Description

An integer

specifying field

width.

d, f, s format

codes

This specifies the minimum field width of the converted

argument. If an argument is shorter than the field width, it will be

padded on the left (or on the right if the - flag is present).

Special case:

For the “@H”, “@Q”, and “@B” flags, the field width includes the

“#H”, “#!”, and “#B” strings, respectively.

A “*” may be present in lieu of a field width modifier, in which

case an extra arg is used. This arg must be an integer

representing the field width.

An integer

specifying

precision.

d, f, s format

codes

The precision string consists of a string of decimal digits. A “.”

(decimal point) must prefix the precision string. The precision

string specifies the following:

 The minimum number of digits to appear for the “@1”,

“@H”, “@Q”, and “@B” flags and the “i”, “o”, “u”, “x”,

and “X” format codes.

 The maximum number of digits after the decimal point

in case of “f” format codes.

 The maximum numbers of characters for the string (s)

specifier.

 Maximum significant digits for g format code.

An asterisk “*” may be present in lieu of a precision modifier, in

which case an extra arg is used. This arg must be an integer

representing the precision of a numeric field.

An argument length

modifier.

h (d, b, B format

codes)

The argument length modifiers specify one of the following:

 The “h” modifier promotes the argument to a short or

unsigned short, depending on the format code type.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 30

h, l, ll, L, z, and Z

are legal values. (z

and Z are not ANSI

C standard flags.)

l (d, f, b, B format

codes)

L (f format code)

z, Z (b, B format

codes)

 The “l” modifier promotes the argument to a long or

unsigned long.

 The “ll” modifier promotes the argument to a long long

or unsigned long long.

 The “L” modifier promotes the argument to a long

double parameter.

 The “z” modifier promotes the argument to an array of

floats.

 The “Z” modifier promotes the argument to an array of

doubles.

A comma (“,”)

followed by an

integer n, where n

represents the

array size.

%d (plus variants)

and %f only

The corresponding argument is interpreted as a reference to the

first element of an array of size n. The first n elements of this list

are printed in the format specified by the format code.

An asterisk (“*”) may be present after the “,” modifier, in which

case an extra arg is used. This arg must be an integer

representing the array size of the given type.

@1 %d (plus variants)

and %f only

Converts to an IEEE 488.2 defined NR1 compatible number,

which is an integer without any decimal point (for example, 123).

@2 %d (plus variants)

and %f only

Converts to an IEEE 488.2 defined NR2 compatible number.

The NR2 number has at least one digit after the decimal point

(for example, 123.45).

@3 %d (plus variants)

and %f only

Converts to an IEEE 488.2 defined NR3 compatible number. An

NR3 number is a floating point number represented in an

exponential form (for example, 1.2345E-67).

@H %d (plus variants)

and %f only

Converts to an IEEE 488.2 defined <HEXADECIMAL NUMERIC

RESPONSE DATA>. The number is represented in a base of 16

form. Only capital letters should represent numbers. The

number is of form "#HXXX..," where XXX.. is a hexadecimal

number (for example, #HAF35B).

@Q %d (plus variants)

and %f only

Converts to an IEEE 488.2 defined <OCTAL NUMERIC

RESPONSE DATA>. The number is represented in a base of

eight form. The number is of the form "#QYYY..," where YYY.. is

an octal number (for example, #Q71234).

@B %d (plus variants)

and %f only

Converts to an IEEE 488.2 defined <BINARY NUMERIC

RESPONSE DATA>. The number is represented in a base two

form. The number is of the form "#BZZZ..," where ZZZ.. is a

binary number (for example, #B011101001).

9.1.3.3 Standard ANSI C Format Codes

 %: Send the ASCII percent (%) character.

 c: Argument type: A character to be sent.

 d: Argument type: An integer.

Modifier Interpretation

Default functionality Print an integer in NR1 format (an integer without a decimal point).

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 31

@2 or @3 The integer is converted into a floating point number and output in the correct

format.

field width Minimum field width of the output number. Any of the six IEEE 488.2 modifiers can

also be specified with field width.

Length modifier l arg is a long integer.

Length modifier ll arg is a long long integer

Length modifier h arg is a short integer.

, array size arg points to an array of integers (or long or short integers, depending on the

length modifier) of size array size. The elements of this array are separated by array

size - 1 commas and output in the specified format.

 f Argument type: A floating point number.

Modifier Interpretation

Default functionality Print a floating point number in NR2 format (a number with at least one digit after

the decimal point).

@1 Print an integer in NR1 format. The number is truncated.

@3 Print a floating point number in NR3 format (scientific notation). Precision can also

be specified.

field width Minimum field width of the output number. Any of the six IEEE 488.2 modifiers can

also be specified with field width.

Length modifier l arg is a double float.

Length modifier L arg is a long double.

, array size arg points to an array of floats (or doubles or long doubles), depending on the

length modifier) of size array size. The elements of this array are separated by array

size – 1 commas and output in the specified format.

 s Argument type: A reference to a NULL-terminated string that is sent to the

device without change.

9.1.3.4 Enhanced Format Codes

 b Argument type: A location of a block of data.

Flag or Modifier Interpretation

Default functionality The data block is sent as an IEEE 488.2 <DEFINITE LENGTH ARBITRARY BLOCK

RESPONSE DATA>. A count (long integer) must appear as a flag that specifies the

number of elements (by default, bytes) in the block. A field width or precision

modifier is not allowed with this format code.

* (asterisk) An asterisk may be present instead of the count. In such a case, two args are

used, the first of which is a long integer specifying the count of the number of

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 32

elements in the data block. The second arg is a reference to the data block. The

size of an element is determined by the optional length modifier (see below), default

being byte width.

Length modifier h The data block is assumed to be an array of unsigned short integers (16 bits). The

count corresponds to the number of words rather than bytes. The data is swapped

and padded into standard IEEE 488.2 format, if native computer representation is

different.

Length modifier l The data block is assumed to be an array of unsigned long integers. The count

corresponds to the number of longwords (32 bits). Each longword data is swapped

and padded into standard IEEE 488.2 format, if native computer representation is

different.

Length modifier ll The data block is assumed to be an array of unsigned long long integers. The count

corresponds to the number of longlongwords (64 bits). Each longlongword data is

swapped and padded into standard IEEE 488.2 format, if native computer

representation is different.

Length modifier z The data block is assumed to be an array of floats. The count corresponds to the

number of floating point numbers (32 bits). The numbers are represented in IEEE

754 format, if native computer representation is different.

Length modifier Z The data block is assumed to be an array of doubles. The count corresponds to the

number of double floats (64 bits). The numbers will be represented in IEEE 754

format, if native computer representation is different.

 B Argument type: A location of a block of data. The functionality is similar to

b, except the data block is sent as an IEEE 488.2 <INDEFINITE LENGTH

ARBITRARY BLOCK RESPONSE DATA>. This format involves sending an

ASCII LF character with the END indicator set after the last byte of the block.

 y Argument type: A location of a block of binary data.

Flags or Modifiers Interpretation

Default functionality The data block is sent as raw binary data. A count (long integer) must appear as a

flag that specifies the number of elements (by default, bytes) in the block. A field

width or precision modifier is not allowed with this format code.

* (asterisk) An asterisk may be present instead of the count. In such a case, two args are

used, the first of which is a long integer specifying the count of the number of

elements in the data block. The second arg is a reference to the data block. The

size of an element is determined by the optional length modifier (see below), default

being byte width.

Length modifier h The data block is an array of unsigned short integers (16 bits). The count

corresponds to the number of words rather than bytes. If the optional “!ol” byte order

modifier is present, the data is sent in little endian format; otherwise, the data is sent

in standard IEEE 488.2 format. Data will be byte swapped and padded as

appropriate if native computer representation is different.

Length modifier l The data block is an array of unsigned long integers (32 bits). The count

corresponds to the number of longwords rather than bytes. If the optional “!ol” byte

order modifier is present, the data is sent in little endian format; otherwise, the data

is sent in standard IEEE 488.2 format. Data will be byte swapped and padded as

appropriate if native computer representation is different.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 33

Length modifier ll The data block is an array of unsigned long long integers (64 bits). The count

corresponds to the number of longlongwords rather than bytes. If the optional “!ol”

byte order modifier is present, the data is sent in little endian format; otherwise, the

data is sent in standard IEEE 488.2 format. Data will be byte swapped and padded

as appropriate if native computer representation is different.

Byte order modifier

!ob

Data is sent in standard IEEE 488.2 (big endian) format. This is the default behavior

if neither “!ob” nor “!ol” is present.

Byte order modifier

!ol

Data is sent in little endian format.

The END indicator is not appended when LF(\n) is part of a binary data block, as with

%b or %B.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 34

9.1.3.5 BNF Format for viPrintf()

The following is the Backus-Naur-Form (BNF) format for the viPrintf() writeFmt

string:

<print_fmt> := {<slashed_special> | <conversion> | <ascii_char> }*

<slashed_special> := "\n" | "\r" | "\\" | "\t" | <oct_esc> | "\"

<oct_esc> := "\"<oct_digit> [<oct_digit> [<oct_digit>]]

<ascii_char> := ASCII characters (other than backslash (\), percent (%), and

 NULL).

<conversion> := <fmt_cod_d> | <fmt_cod_f> | <fmt_cod_c> | <fmt_cod_b> |

 <fmt_cod_B> | <fmt_cod_s> | <fmt_cod_e> | <fmt_cod_y>

 "%%"

<fmt_cod_d> := "%" [<numeric_mod>] [<field width>]

 ["." <precision>] [","<array_size>] ["l" | “ll” | "h"] "d"

<fmt_cod_f> := "%" [<numeric_mod>] [<field_width>]

 ["." <precision>] [","<array_size>] ["l" |"L"] "f"

<fmt_cod_e> := "%" [<numeric_mod>] [<field_width>]

 ["." <precision>] [","<array_size>] ["l" |"L"] "e"

<fmt_cod_b> := "%" <array_size> ["h" | "l" | “ll” | "z" |"Z"] "b"

<fmt_cod_B> := "%" <array_size> ["h" | "l" | “ll” | "z" | "Z"] "B"

<fmt_cod_c> := "%c"

<fmt_cod_s> := "%" [<just_mod>] [<field_width>] ["."<precision>] "s"

<fmt_cod_y> := "%" <array_size> [<swap_mod>] ["h" | "l" | “ll”] "y"

<swap_mod> := "!ob" | "!ol"

<numeric_mod> := "-" | "+" | " " | "@1" | "@2" | "@3" | "@H" | "@Q" | "@B"

<just_mod> := "-"

<field_width> := <positive_integer> | "*"

<precision> := <positive_integer> | "*"

<array_size> := <positive_integer> | "*"

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 35

9.1.4 Format String for viScanf functions

The format strings, as presented in this section, are employed in viScanf (cf. Sec.

9.2.29) commands and their derivatives (viQueryf, viSScanf, viVScanf, viVSScanf,

and viVQueryf).

In these commands the parameter readFmt (or equivalent) string can include regular

character sequences, special formatting characters, and special format specifiers. The

white characters - blank, vertical tabs, horizontal tabs, form feeds, new line/linefeed, and

carriage return - are ignored except in the case of %c and %[]. All other ordinary

characters except % should match the next character read from the device. The format

specifier sequence consists of “%” (percent) followed by optional modifier flags, followed

by a format code.

9.1.4.1 ANSI C Standard Modifiers

Modifier Supported with

Format Codes

Description

An integer

representing the

field width

%s, %c, %[] format

codes

It specifies the maximum field width that the argument

will take. A ‘#’ may also appear instead of the integer

field width, in which case the next arg is a reference to

the field width. This arg is a reference to an integer for

%c and %s. The field width is not allowed for %d or %f.

A length modifier

(‘l,’ ‘ll,’ ‘h,’ ‘z,’ or

‘Z’).

z and Z are not

ANSI C standard

modifiers.

h (d, b format codes)

l (d, f, b format codes)

ll (d, b format codes)

L (f format code)

z, Z (b format code)

The argument length modifiers specify one of the

following:

a. The h modifier promotes the argument to be a

reference to a short integer or unsigned short

integer, depending on the format code.

b. The l modifier promotes the argument to point to a

long integer or unsigned long integer.

c. The ll modifier promotes the argument to point to a

long long integer or unsigned long long integer.

d. The L modifier promotes the argument to point to a

long double floats parameter.

e. The z modifier promotes the argument to point to

an array of floats.

f. The Z modifier promotes the argument to point to

an array of double floats.

* (asterisk) All format codes An asterisk acts as the assignment suppression

character. The input is not assigned to any parameters

and is discarded.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 36

9.1.4.2 Enhanced Modifiers to ANSI C Standards

Modifier Supported with

Format Codes

Description

A comma (‘,’)

followed by an

integer n, where

n represents the

array size.

%d (plus variants) and

%f only

The corresponding argument is interpreted as a

reference to the first element of an array of size n. The

first n elements of this list are printed in the format

specified by the format code.

A number sign (‘#’) may be present after the ‘,’ modifier,

in which case an extra arg is used. This arg must be

an integer representing the array size of the given type.

@1 %d (plus variants) and

%f only

Converts to an IEEE 488.2 defined NR1 compatible

number, which is an integer without any decimal point

(for example, 123).

@2 %d (plus variants) and

%f only

Converts to an IEEE 488.2 defined NR2 compatible

number. The NR2 number has at least one digit after the

decimal point (for example, 123.45).

@H %d (plus variants) and

%f only

Converts to an IEEE 488.2 defined <HEXADECIMAL

NUMERIC RESPONSE DATA>. The number is

represented in a base of sixteen form. Only capital

letters should represent numbers. The number is of form

"#HXXX..," where XXX.. is a hexadecimal number (for

example, #HAF35B).

@Q %d (plus variants) and

%f only

Converts to an IEEE 488.2 defined <OCTAL NUMERIC

RESPONSE DATA>. The number is represented in a

base of eight form. The number is of the form "#QYYY..,"

where YYY.. is an octal number (for example, #Q71234).

@B %d (plus variants) and

%f only

Converts to an IEEE 488.2 defined <BINARY NUMERIC

RESPONSE DATA>. The number is represented in a

base two form. The number is of the form "#BZZZ..,"

where ZZZ.. is a binary number (for example,

#B011101001).

9.1.4.3 Standard ANSI C Format Codes

 c Argument type: A reference to a character.

Flags or Modifiers Interpretation

Default functionality A character is read from the device and stored in the parameter.

field width field width number of characters are read and stored at the reference

location (the default field width is 1). No NULL character is added at the

end of the data block.

Note: White space in the device input stream is not ignored.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 37

 d Argument type: A reference to an integer.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until an entire number is read. The

number read may be in either IEEE 488.2 formats <DECIMAL

NUMERIC PROGRAM DATA>, also known as NRf; flexible numeric

representation (NR1, NR2, NR3...); or <NON-DECIMAL NUMERIC

PROGRAM DATA> (#H, #Q, and #B).

field width The input number will be stored in a field at least this wide.

Length modifier l arg is a reference to a long integer.

Length modifier ll arg is a reference to a long long integer.

Length modifier h arg is a reference to a short integer. Rounding is performed according

to IEEE 488.2 rules (0.5 and up).

, array size arg points to an array of integers (or long or short integers, depending

on the length modifier) of size array size. The elements of this array

should be separated by commas. Elements will be read until either array

size number of elements are consumed or they are no longer separated

by commas.

 f Argument type: A reference to a floating point number.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until an entire number is read. The

number read may be in either IEEE 488.2 formats <DECIMAL

NUMERIC PROGRAM DATA> (NRf) or <NON-DECIMAL NUMERIC

PROGRAM DATA> (#H, #Q, and #B).

field width The input number will be stored in a field at least this wide.

Length modifier l arg is a reference to a double floating point number.

Length modifier L arg is a reference to a long double number.

, array size arg points to an array of floats (or double or long double, depending on

the length modifier) of size array size. The elements of this array should

be separated by commas. Elements will be read until either array size

number of elements are consumed or they are no longer separated by

commas.

 s Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality All leading white space characters are ignored. Characters are read

from the device into the string until a white space character is read.

field width This flag gives the maximum string size. If the field width contains a #

sign, two arguments are used. The first argument read is a pointer to an

integer specifying the maximum array size. The second should be a

reference to an array. In case of field width characters already read

before encountering a white space, additional characters are read and

discarded until a white space character is found. In case of # field width,

the actual number of characters that were copied into the user array,

not counting the trailing NULL character, are stored back in the integer

pointed to by the first argument.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 38

9.1.4.4 Enhanced Format Codes

 b Argument type: A reference to a data array.

Flags or Modifiers Interpretation

Default functionality The data must be in IEEE 488.2 <ARBITRARY BLOCK PROGRAM

DATA> format. The format specifier sequence should have a flag

describing the array size, which will give a maximum count of the

number of bytes (or words or longwords, depending on length modifiers)

to be read from the device. If the array size contains a # sign, two

arguments are used. The first argument read is a pointer to a long

integer specifying the maximum number of elements that the array can

hold. The second one should be a reference to an array. Also, in this

case the actual number of elements read is stored back in the first

argument. In absence of length modifiers, the data is assumed to be of

byte-size elements. In some cases, data might be read until an END

indicator is read.

Length modifier h The array is assumed to be an array of 16-bit words, and count refers

to the number of words. The data read from the interface is assumed to

be in IEEE 488.2 byte ordering. It will be byte swapped and padded as

appropriate to native computer format.

Length modifier l The array is assumed to be a block of 32-bit longwords rather than

bytes, and count now refers to the number of longwords. The data read

from the interface is assumed to be in IEEE 488.2 byte ordering. It will

be byte swapped and padded as appropriate to native computer format.

Length modifier ll The array is assumed to be a block of 64-bit longlongwords rather than

bytes, and count now refers to the number of longlongwords. The data

read from the interface is assumed to be in IEEE 488.2 byte ordering. It

will be byte swapped and padded as appropriate to native computer

format.

Length modifier z The data block is assumed to be a reference to an array of floats, and

count now refers to the number of floating point numbers. The data

block received from the device is an array of 32-bit IEEE 754 format

floating point numbers.

Length modifier Z The data block is assumed to be a reference to an array of doubles, and

the count now refers to the number of floating point numbers. The data

block received from the device is an array of 64-bit IEEE 754 format

floating point numbers.

 t Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until the first END indicator is

received. The character on which the END indicator was received is

included in the buffer.

field width This flag gives the maximum string size. If an END indicator is not

received before field width number of characters, additional characters

are read and discarded until an END indicator arrives. #field width has

the same meaning as in %s.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 39

 T Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until the first linefeed character (\n)

is received. The linefeed character is included in the buffer.

field width This flag gives the maximum string size. If a linefeed character is not

received before field width number of characters, additional characters

are read and discarded until a linefeed character arrives. #field width has

the same meaning as in %s.

 y Argument type: A reference to a data array.

Flags or Modifiers Interpretation

Default functionality The data block is read as raw binary data. The format specifier

sequence should have a flag describing the array size, which will give a

maximum count of the number of bytes (or words or longwords,

depending on length modifiers) to be read from the device. If the array

size contains a # sign, two arguments are used. The first argument read

is a pointer to a long integer specifying the maximum number of

elements that the array can hold. The second one should be a reference

to an array. Also, in this case the actual number of elements read is

stored back in the first argument. In absence of length modifiers, the

data is assumed to be of byte-size elements. In some cases, data might

be read until an END indicator is read.

Length modifier h The data block is assumed to be a reference to an array of unsigned

short integers (16 bits). The count corresponds to the number of words

rather than bytes. If the optional “!ol” byte order modifier is present, the

data being read is assumed to be in little endian format; otherwise, the

data being read is assumed to be in standard IEEE 488.2 format. Data

will be byte swapped and padded as appropriate to native computer

format

Length modifier l The data block is assumed to be a reference to an array of unsigned

long integers (32 bits). The count corresponds to the number of

longwords rather than bytes. If the optional “!ol” byte order modifier is

present, the data being read is assumed to be in little endian format;

otherwise, the data being read is assumed to be in standard IEEE 488.2

format. Data will be byte swapped and padded as appropriate to native

computer format

Length modifier ll The data block is assumed to be a reference to an array of unsigned

long long integers (64 bits). The count corresponds to the number of

longlongwords rather than bytes. If the optional “!ol” byte order modifier

is present, the data being read is assumed to be in little endian format;

otherwise, the data being read is assumed to be in standard IEEE 488.2

format. Data will be byte swapped and padded as appropriate to native

computer format

Byte order modifier !ob The data being read is assumed to be in standard IEEE 488.2 format.

This is the default behavior if neither “!ob” nor “!ol” is present.

Byte order modifier !ol The data being read is assumed to be in little endian format.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 40

9.1.4.5 BNF Format for viScanf() readFmt String

The following is the BNF format for the viScanf() readFmt string:

<scan_fmt> := {<slashed_special> | <conversion> | <ascii_char> } *

<slashed _special> := "\n" | "\r" | "\t" | "\\" | <oct _esc> | "\"

<oct_esc> := "\"<oct_digit> [<oct_digit> [<oct_digit>]]

<ascii_char> := Any ASCII character except slash (\) or percent (%).

<conversion> := <fmt_cod_c> | <fmt_cod_d> | <fmt_cod_e> | <fmt_cod_b> |

 <fmt_cod_f> | <fmt_cod_s> | <fmt_cod_t> | <fmt_cod_T> |

 <fmt_cod_y> | "%%"

<fmt_cod_b> := "%" ["*"] [<array_size >] ["h" | "l" | “ll” | "z" | "Z"] "b"

<fmt_cod_c> := "%" ["*"] [<field_width>] "c"

<fmt_cod_d> := "%" ["*"] [","<array_size>] ["l" | “ll” | "h"] "d"

<fmt_cod_e> := "%" ["*"] [","<array_size>] ["l" | "L"] "e"

<fmt_cod_f> := "%" ["*"] [","<array_size>] ["l" | "L"] "f"

<fmt_cod_s> := "%" ["*"] [<field_width>] "s"

<fmt_cod_t> := "%" ["*"] [<field_width>] "t"

<fmt_cod_T> := "%" ["*"] [<field_width>] "T"

<fmt_cod_y> := "%" ["*"] <array_size> [<swap_mod>] ["h" | "l" | “ll”] "y"

<swap_mod> := "!ob" | "!ol"

<field_width> := <positive_integer> | "#"

<array_size> := <positive_integer> | "#"

9.2 API functions

In the following an alphabetical list of VISA functions is presented.

9.2.1 viAssertTrigger

Purpose

Assert software or hardware trigger.

Syntax

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 41

ViStatus viAssertTrigger(ViSession vi, ViUInt16 protocol)

Parameters

vi IN Unique logical identifier to session.

protocol IN Trigger protocol to use during assertion. Valid values

are: VI_TRIG_PROT_DEFAULT, VI_TRIG_PROT_ON,

VI_TRIG_PROT_OFF, VI_TRIG_PROT_SYNC,

VI_TRIG_PROT_RESERVE, and VI_TRIG_PROT_UNRESERVE.

Return Values

VI_SUCCESS The specified trigger was successfully asserted to the

device.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_INV_PROT The protocol specified is invalid.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_LINE_IN_USE The specified trigger line is currently in use.

VI_ERROR_NCIC The interface associated with the given vi is not

currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC

are deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due

to attributes being set to an inconsistent state).

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

VI_ERROR_LINE_NRESERVED An attempt was made to use a line that was not

reserved.

Description

This operation will source a software or hardware trigger dependent on the interface

type. For a GPIB device, the device is addressed to listen, and then the GPIB GET

command is sent. For a VXI device, if VI_ATTR_TRIG_ID is VI_TRIG_SW, then the device is

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 42

sent the Word Serial Trigger command; for any other values of the attribute, a hardware

trigger is sent on the line corresponding to the value of that attribute. For a session to a

Serial device or TCP/IP socket, if VI_ATTR_IO_PROT is VI_PROT_4882_STRS, the device is

sent the string “*TRG\n”; otherwise, this operation is not valid. For a session to a USB

instrument, this function sends the TRIGGER message ID on the Bulk-OUT pipe.

For GPIB, USB, and VXI software triggers, VI_TRIG_PROT_DEFAULT is the only valid

protocol. For VXI hardware triggers, VI_TRIG_PROT_DEFAULT is equivalent to

VI_TRIG_PROT_SYNC.

9.2.2 viBufRead

Purpose

Similar to viRead(), except that the operation uses the formatted I/O read buffer for

holding data read from the device.

Syntax

ViStatus viBufRead(ViSession vi, ViPBuf buf, ViUInt32 cnt, ViPUInt32 retCnt)

Parameters

vi IN Unique logical identifier to a session.

buf OUT Represents the location of a buffer to receive data from

device.

cnt IN Number of bytes to be read.

retCnt OUT Represents the location of an integer that will be set to

the number of bytes actually transferred.

Return Values

VI_SUCCESS The operation completed successfully and the END

indicator was received (for interfaces that have END

indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_IO An unknown I/O error occurred during transfer.

Description

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 43

This operation is similar to viRead() and does not perform any kind of data formatting. It

differs from viRead() in that the data is read from the formatted I/O read buffer (the same

buffer as used by viScanf() and related operations) rather than directly from the device.

This operation can intermix with the viScanf() operation, but use with the viRead()

operation is discouraged.

9.2.3 viBufWrite

Purpose

Similar to viWrite(), except the data is written to the formatted I/O write buffer rather

than directly to the device.

Syntax

ViStatus viBufWrite(ViSession vi, ViBuf buf, ViUInt32 cnt, ViPUInt32 retCnt)

Parameters

vi IN Unique logical identifier to a session.

buf IN Represents the location of a data block to be sent to

device.

cnt IN Specifies number of bytes to be written.

retCnt OUT Represents the location of an integer that will be set to

the number of bytes actually transferred.

Return Values

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_INV_SETUP Unable to start write operation because setup is invalid

(due to attributes being set to an inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during transfer.

Description

This operation is similar to viWrite() and does not perform any kind of data formatting.

It differs from viWrite() in that the data is written to the formatted I/O write buffer (the

same buffer as used by viPrintf() and related operations) rather than directly to the

device. This operation can intermix with the viPrintf() operation, but mixing it with the

viWrite() operation is discouraged.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 44

9.2.4 viClear

Purpose

Clear a device.

Syntax

ViStatus viClear(ViSession vi)

Parameters

vi IN Unique logical identifier to a session.

Return Values

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is not

currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC

are deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due

to attributes being set to an inconsistent state).

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Description

This operation performs an IEEE 488.1-style clear of the device. For VXI INSTR

sessions, VISA must use the Word Serial Clear command. For GPIB INSTR sessions,

VISA uses the Selected Device Clear command. For Serial INSTR sessions, VISA must

flush (discard) the I/O output buffer, send a break, and then flush (discard) the I/O input

buffer. For TCP/IP sessions, VISA must flush (discard) the I/O buffers. Flushing the data

may take longer than the VISA timeout without returning VI_ERROR_TMO. For USB INSTR

sessions, VISA sends the INITIATE_CLEAR and CHECK_CLEAR_STATUS commands

on the control pipe.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 45

9.2.5 viClose

Purpose

Close the specified session, event, or find list.

Syntax

ViStatus viClose(ViObject vi)

Parameters

vi IN Unique logical identifier to a session, event, or find list.

Return Values

VI_SUCCESS Session, event, or find list closed successfully.

VI_WARN_NULL_OBJECT The specified object reference is uninitialized.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data

structures corresponding to this session or object

reference.

Description

This operation closes a session, event, or a find list. In this process all the data structures

that had been allocated for the specified vi are freed

9.2.6 viDisableEvent

Purpose

Disable notification of an event type by the specified mechanisms.

Syntax

ViStatus viDisableEvent(ViSession vi, ViEventType eventType, ViUInt16 mechanism)

Parameters

vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

mechanism IN Specifies event handling mechanisms to be disabled.

The queuing mechanism is disabled by specifying

VI_QUEUE, and the callback mechanism is disabled by

specifying VI_HNDLR or VI_SUSPEND_HNDLR. It is possible

to disable both mechanisms simultaneously by

specifying VI_ALL_MECH.

Return Values

VI_SUCCESS Event disabled successfully.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 46

VI_SUCCESS_EVENT_DIS Specified event is already disabled for at least one of

the specified mechanisms.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

Description

This operation disables servicing of an event identified by the eventType parameter for

the mechanisms specified in the mechanism parameter. Specifying

VI_ALL_ENABLED_EVENTS for the eventType parameter allows a session to stop receiving

all events. The session can stop receiving queued events by specifying VI_QUEUE.

Applications can stop receiving callback events by specifying either VI_HNDLR or

VI_SUSPEND_HNDLR. Specifying VI_ALL_MECH disables both the queuing and callback

mechanisms.

9.2.7 viDiscardEvents

Purpose

Discard event occurrences for specified event types and mechanisms in a session.

Syntax

ViStatus viDiscardEvents(ViSession vi, ViEventType eventType, ViUInt16 mechanism)

Parameters

vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

mechanism IN Specifies the mechanisms for which the events are to

be discarded. The VI_QUEUE value is specified for the

queuing mechanism and the VI_SUSPEND_HNDLR value is

specified for the pending events in the callback

mechanism. It is possible to specify both mechanisms

simultaneously by specifying VI_ALL_MECH.

Return Values

VI_SUCCESS Event queue flushed successfully.

VI_SUCCESS_QUEUE_EMPTY Operation completed successfully, but queue was

empty.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 47

Description

This operation discards all pending occurrences of the specified event types and

mechanisms from the specified session. The information about all the event occurrences

that have not yet been handled is discarded. This operation is useful to remove event

occurrences that an application no longer needs.

9.2.8 viEnableEvent

Purpose

Enable notification of a specified event.

Syntax

ViStatus viEnableEvent(ViSession vi, ViEventType eventType, ViUInt16 mechanism,

ViEventFilter context)

Parameters

vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

mechanism IN Specifies event handling mechanisms to be enabled.

The queuing mechanism is enabled by specifying

VI_QUEUE, and the callback mechanism is enabled by

specifying VI_HNDLR or VI_SUSPEND_HNDLR. It is possible

to enable both mechanisms simultaneously by

specifying "bit-wise OR" of VI_QUEUE and one of the two

mode values for the callback mechanism.

context IN VI_NULL

Return Values

VI_SUCCESS Event enabled successfully.

VI_SUCCESS_EVENT_EN Specified event is already enabled for at least one of

the specified mechanisms.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

VI_ERROR_INV_CONTEXT Specified event context is invalid.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified

event. The session cannot be enabled for the

VI_HNDLR mode of the callback mechanism.

VI_ERROR_NSUP_MECH The specified mechanism is not supported for the

given event type.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 48

Description

This operation enables notification of an event identified by the eventType parameter for

mechanisms specified in the mechanism parameter. The specified session can be

enabled to queue events by specifying VI_QUEUE. Applications can enable the session to

invoke a callback function to execute the handler by specifying VI_HNDLR. The

applications are required to install at least one handler to be enabled for this mode.

Specifying VI_SUSPEND_HNDLR enables the session to receive callbacks, but the invocation

of the handler is deferred to a later time. Successive calls to this operation replace the

old callback mechanism with the new callback mechanism. Specifying

VI_ALL_ENABLED_EVENTS for the eventType parameter refers to all events that have

previously been enabled on this session, making it easier to switch between the two

callback mechanisms for multiple events.

9.2.9 viFindNext

Purpose

Return the next resource found during a previous call to viFindRsrc().

Syntax

ViStatus viFindNext(ViFindList vi, ViChar desc[])

Parameters

vi IN Describes a find list. This parameter must be created

by viFindRsrc().

desc OUT Returns a string identifying the location of a device.

Strings can then be passed to viOpen() to establish a

session to the given device.

Return Values

VI_SUCCESS Resource(s) found.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given findList does not support this operation.

VI_ERROR_RSRC_NFOUND There are no more matches.

Description

This operation returns the next device found in the list created by viFindRsrc(). The list

is referenced by the handle that was returned by </c>viFindRsrc()</c>.

9.2.10 viFindRsrc

Purpose

Query a VISA system to locate the resources associated with a specified interface.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 49

Syntax

ViStatus viFindRsrc(ViSession sesn, ViString expr, ViPFindList vi, ViPUInt32

retCnt, ViChar desc[])

Parameters

sesn IN Resource Manager session (should always be the

Default Resource Manager for VISA returned from

viOpenDefaultRM()).

expr IN This is a regular expression followed by an optional

logical expression. The grammar for this expression is

given below.

vi OUT Returns a handle identifying this search session. This

handle will be used as an input in viFindNext().

retcnt OUT Number of matches.

desc OUT Returns a string identifying the location of a device.

Strings can then be passed to viOpen() to establish a

session to the given device.

Return Values

VI_SUCCESS Resource(s) found.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given sesn does not support this operation.

VI_ERROR_INV_EXPR Invalid expression specified for search.

VI_ERROR_RSRC_NFOUND Specified expression does not match any devices.

Description

This operation matches the value specified in the expr parameter with the resources

available for a particular interface. On successful completion, it returns the first resource

found in the list and returns a count to indicate if there were more resources found for

the designated interface. This function also returns the handle vi to a find list. This

handle points to the list of resources and it must be used as an input to viFindNext().

When this handle is no longer needed, it should be passed to viClose().

9.2.11 viFlush

Purpose

Manually flush the specified buffers associated with formatted I/O operations and/or

serial communication.

Syntax

ViStatus viFlush(ViSession vi, ViUInt16 mask)

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 50

Parameters

vi IN Unique logical identifier to a session.

mask IN Specifies the action to be taken with flushing the buffer.

Return Values

VI_SUCCESS Buffers flushed successfully.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_IO Could not perform read/write operation because of I/O

error.

VI_ERROR_TMO The read/write operation was aborted because timeout

expired while operation was in progress.

VI_ERROR_INV_MASK The specified mask does not specify a valid flush

operation on read/write resource.

VI_READ_BUF Discard the read buffer contents and if data was

present in the read buffer and no END-indicator was

present, read from the device until encountering an

END indicator (which causes the loss of data). This

action resynchronizes the next viScanf() call to read a

<TERMINATED RESPONSE MESSAGE>.

(Refer to the IEEE 488.2 standard.)

VI_READ_BUF_DISCARD Discard the read buffer contents (does not perform

any I/O to the device).

VI_WRITE_BUF Flush the write buffer by writing all buffered data to the

device.

VI_WRITE_BUF_DISCARD Discard the write buffer contents (does not perform any

I/O to the device).

VI_IO_IN_BUF Discards the receive buffer contents (same as

VI_IO_IN_BUF_DISCARD).

VI_IO_IN_BUF_DISCARD Discard the receive buffer contents (does not perform

any I/O to the device).

VI_IO_OUT_BUF Flush the transmit buffer by writing all buffered data to

the device.

VI_IO_OUT_BUF_DISCARD Discard the transmit buffer contents (does not perform

any I/O to the device).

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 51

Description

The value of mask can be one of the following flags:

─ VI_READ_BUF: Discard the read buffer contents and if data was present in the

read buffer and no END-indicator was present, read from the device until

encountering an END indicator (which causes the loss of data). This action

resynchronizes the next viScanf() call to read a <TERMINATED

RESPONSE MESSAGE>. (Refer to the IEEE 488.2 standard.)

─ VI_READ_BUF_DISCARD: Discard the read buffer contents (does not perform any

I/O to the device).

─ VI_WRITE_BUF: Flush the write buffer by writing all buffered data to the device.

─ VI_WRITE_BUF_DISCARD: Discard the write buffer contents (does not perform

any I/O to the device).

─ VI_IO_IN_BUF: Discards the receive buffer contents (same as

VI_IO_IN_BUF_DISCARD).

─ VI_IO_IN_BUF_DISCARD: Discard the receive buffer contents (does not perform

any I/O to the device).

─ VI_IO_OUT_BUF: Flush the transmit buffer by writing all buffered data to the

device.

─ VI_IO_OUT_BUF_DISCARD: Discard the transmit buffer contents (does not

perform any I/O to the device).

It is possible to combine any of these read flags and write flags for different buffers by

OR-ing the flags. However, combining two flags for the same buffer in the same call to

viFlush() is illegal.

9.2.12 viGetAttribute

Purpose

Retrieve the state of an attribute.

Syntax

ViStatus viGetAttribute(ViObject vi, ViAttr attrName, void _VI_PTR attrValue)

Parameters

vi IN Unique logical identifier to a session, event, or find list.

attrName IN Session, event, or find list attribute for which the state

query is made.

attrValue OUT The state of the queried attribute for a specified

resource. The interpretation of the returned value is

defined by the individual resource.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 52

Return Values

VI_SUCCESS Session, event, or find list attribute retrieved

successfully.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced

session, event, or find list.

Description

The viGetAttribute() operation is used to retrieve the state of an attribute for the

specified session, event, or find list.

9.2.13 viGpibCommand

Purpose

Write GPIB command bytes on the bus.

Syntax

ViStatus viGpibCommand(ViSession vi, ViBuf cmd, ViUInt32 cnt, ViPUInt32 retCnt)

Parameters

vi IN Unique logical identifier to a session.

cmd IN Buffer containing valid GPIB commands.

cnt IN Number of bytes to be written.

retCount OUT Number of bytes actually transferred.

Return Values

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_INV_SETUP Unable to start write operation because setup is invalid

(due to attributes being set to an inconsistent state).

VI_ERROR_NCIC The interface associated with the given vi is not

currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC

are deasserted).

VI_ERROR_IO An unknown I/O error occurred during transfer.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 53

Description

This operation attempts to write count number of bytes of GPIB commands to the

interface bus specified by vi. This operation is valid only on GPIB INTFC (interface)

sessions. This operation returns only when the transfer terminates.

9.2.14 viGpibControlATN

Purpose

Controls the state of the GPIB ATN interface line, and optionally the active controller

state of the local interface board.

Syntax

ViStatus viGpibControlATN(ViSession vi, ViUInt16 mode)

Parameters

vi IN Unique logical identifier to a session.

mode IN Specifies the state of the ATN line and optionally the

local active controller state. See the Description

section for actual values.

Return Values

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_NCIC The interface associated with this session is not

currently the controller in charge.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

VI_ERROR_NSUP_MODE The specified mode is not supported by this VISA

implementation.

Description

This operation asserts or deasserts the GPIB ATN interface line according to the

specified mode. The mode can also specify whether the local interface board should

acquire or release Controller Active status. This operation is valid only on GPIB INTFC

(interface) sessions.

It is generally not necessary to use the viGpibControlATN() operation in most

applications. Other operations such as viGpibCommand() and viGpibPassControl() modify

the ATN and/or CIC state automatically. The following modes are available:

─ VI_GPIB_ATN_DEASSERT Deassert ATN line.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 54

─ VI_GPIB_ATN_ASSERT Assert ATN line synchronously (in 488 terminology). If a

data handshake is in progress, ATN will not be asserted until the handshake

is complete.

─ VI_GPIB_ATN_DEASSERT_HANDSHAKE Deassert ATN line, and enter shadow

handshake mode. The local board will participate in data handshakes as an

Acceptor without actually reading the data.

─ VI_GPIB_ATN_ASSERT_IMMEDIATE Assert ATN line asynchronously (in 488

terminology). This should generally be used only under error conditions.

9.2.15 viGpibControlREN

Purpose

Controls the state of the GPIB REN interface line, and optionally the remote/local state

of the device.

Syntax

ViStatus viGpibControlREN(ViSession vi, ViUInt16 mode)

Parameters

vi IN Unique logical identifier to a session.

mode IN Specifies the state of the REN line and optionally the

device remote/local state. See the Description section

for actual values.

Return Values

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_NCIC The interface associated with this session is not

currently the controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC

are deasserted).

VI_ERROR_NSYS_CNTLR The interface associated with this session is not the

system controller.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

Description

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 55

This operation asserts or deasserts the GPIB REN interface line according to the

specified mode. The mode can also specify whether the device associated with this session

should be placed in local state (before deasserting REN) or remote state (after asserting

REN). This operation is valid only if the GPIB interface associated with the session

specified by vi is currently the system controller. The following modes are available:

─ VI_GPIB_REN_DEASSERT: Deassert REN line.

─ VI_GPIB_REN_ASSERT: Assert REN line.

─ VI_GPIB_REN_DEASSERT_GTL: Send the Go To Local command (GTL) to this

device and deassert REN line.

─ VI_GPIB_REN_ASSERT_ADDRESS: Assert REN line and address this device.

─ VI_GPIB_REN_ASSERT_LLO: Send LLO to any devices that are addressed to

listen.

─ VI_GPIB_REN_ASSERT_ADDRESS_LLO: Address this device and send it LLO,

putting it in RWLS.

─ VI_GPIB_REN_ADDRESS_GTL: Send the Go To Local command (GTL) to this

device.

9.2.16 viGpibPassControl

Purpose

Tell the GPIB device at the specified address to become controller in charge (CIC).

Syntax

ViStatus viGpibPassControl(ViSession vi, ViUInt16 primAddr, ViUInt16 secAddr)

Parameters

vi IN Unique logical identifier to a session.

primAddr IN Primary address of the GPIB device to which you want

to pass control.

secAddr IN Secondary address of the targeted GPIB device. If the

targeted device does not have a secondary address,

this parameter should contain the value

VI_NO_SEC_ADDR.

Return Values

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 56

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_NCIC The interface associated with the given vi is not

currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC

are deasserted).

VI_ERROR_IO An unknown I/O error occurred during transfer.

Description

This operation passes controller in charge status to the device indicated by primAddr and

secAddr, and then deasserts the ATN line. This operation assumes that the targeted

device has controller capability. This operation is valid only on GPIB INTFC (interface)

sessions.

9.2.17 viGpibSendIFC

Purpose

Pulse the interface clear line (IFC) for at least 100 micorseconds.

Syntax

ViStatus viGpibSendIFC(ViSession vi)

Parameters

vi IN Unique logical identifier to a session.

Return Values

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_NSYS_CNTLR The interface associated with this session is not the

system controller.

Description

This operation asserts the IFC line and becomes controller in charge (CIC). The local

board must be the system controller. This operation is valid only on GPIB INTFC

(interface) sessions.

9.2.18 viInstallHandler

Purpose

Install handlers for event callbacks.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 57

Syntax

ViStatus viInstallHandler(ViSession vi, ViEventType eventType, ViHndlr handler,

ViAddr userHandle)

Parameters

vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

handler IN Interpreted as a valid reference to a handler to be

installed by a client application.

userHandle IN A value specified by an application that can be used

for identifying handlers uniquely for an event type.

Return Values

VI_SUCCESS Event handler installed successfully.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_HNDLR_REF The given handler reference is invalid.

VI_ERROR_HNDLR_NINSTALLED The handler was not installed. This may be returned if

an application attempts to install multiple handlers for

the same event on the same session.

Description

This operation allows applications to install handlers on sessions. The handler specified

in the handler parameter is installed along with previously installed handlers for the

specified event. Applications can specify a value in the userHandle parameter that is

passed to the handler on its invocation. VISA identifies handlers uniquely using the

handler reference and this value.

9.2.19 viLock

Purpose

Establish an access mode to the specified resource.

Syntax

ViStatus viLock(ViSession vi, ViAccessMode lockType, ViUInt32 timeout, ViKeyId

requestedKey, ViChar accessKey[])

Parameters

vi IN Unique logical identifier to a session.

lockType IN Specifies the type of lock requested, which can be

either VI_EXCLUSIVE_LOCK or VI_SHARED_LOCK.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 58

timeout IN Absolute time period (in milliseconds) that a resource

waits to get unlocked by the locking session before

returning this operation with an error.

requestedKey IN This parameter is not used and should be set to

VI_NULL when lockType is VI_EXCLUSIVE_LOCK

(exclusive locks). When trying to lock the resource as

VI_SHARED_LOCK (shared), a session can either set it to

VI_NULL, so that VISA generates an accessKey for the

session, or the session can suggest an accessKey to

use for the shared lock. Refer to the description section

below for more details.

accessKey OUT This parameter should be set to VI_NULL when

lockType is VI_EXCLUSIVE_LOCK (exclusive locks). When

trying to lock the resource as VI_SHARED_LOCK (shared),

the resource returns a unique access key for the lock

if the operation succeeds. This accessKey can then be

passed to other sessions to share the lock.

Return Values

VI_SUCCESS Specified access mode is successfully acquired.

VI_SUCCESS_NESTED_EXCLUSIV

E
Specified access mode is successfully acquired, and

this session has nested exclusive locks.

VI_SUCCESS_NESTED_SHARED Specified access mode is successfully acquired, and

this session has nested shared locks.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained because the

resource is already locked with a lock type

incompatible with the lock requested.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by this

resource.

VI_ERROR_INV_ACCESS_KEY The requestedKey value passed in is not a valid

access key to the specified resource.

VI_ERROR_TMO Specified type of lock could not be obtained within the

specified timeout period.

Description

This operation is used to obtain a lock on the specified resource. The caller can specify

the type of lock requested—exclusive or shared lock—and the length of time the

operation will suspend while waiting to acquire the lock before timing out. This operation

can also be used for sharing and nesting locks.

The requestedKey and the accessKey parameters apply only to shared locks. These

parameters are not applicable when using the lock type VI_EXCLUSIVE_LOCK; in this case,

requestedKey and accessKey should be set to VI_NULL. VISA allows user applications to

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 59

specify a key to be used for lock sharing, through the use of the requestedKey parameter.

Alternatively, a user application can pass VI_NULL for the requestedKey parameter when

obtaining a shared lock, in which case VISA will generate a unique access key and return

it through the accessKey parameter. If a user application does specify a requestedKey

value, VISA will try to use this value for the accessKey. As long as the resource is not

locked, VISA will use the requestedKey as the access key and grant the lock. When the

operation succeeds, the requestedKey will be copied into the user buffer referred to by

the accessKey parameter.

The session that gained a shared lock can pass the accessKey to other sessions for the

purpose of the sharing the lock. The session wanting to join the group of sessions

sharing the lock can use the key as an input value to the requestedKey parameter. VISA

will add the session to the list of sessions sharing the lock, as long as the requestedKey

value matches the accessKey value for the particular resource. The session obtaining a

shared lock in this manner will then have the same access privileges as the original

session that obtained the lock.

It is also possible to obtain nested locks through this operation. To acquire nested locks,

invoke the viLock() operation with the same lock type as the previous invocation of this

operation. For each session, viLock() and viUnlock() share a lock count, which is

initialized to 0. Each invocation of viLock() for the same session (and for the same

lockType) increases the lock count. In the case of a shared lock, it returns with the same

accessKey every time. When a session locks the resource a multiple number of times, it

is necessary to invoke the viUnlock() operation an equal number of times in order to

unlock the resource. That is, the lock count increments for each invocation of viLock(),

and decrements for each invocation of viUnlock(). A resource is actually unlocked only

when the lock count is 0.

9.2.20 viOpen

Purpose

Open a session to the specified device.

Syntax

ViStatus viOpen(ViSession sesn, ViRsrc name, ViAccessMode mode, ViUInt32 timeout,

ViPSession vi)

Parameters

sesn IN Resource Manager session (should always be the

Default Resource Manager for VISA returned from

viOpenDefaultRM()).

name IN Unique symbolic name of a resource.

mode IN Specifies the modes by which the resource is to be

accessed. The value VI_EXCLUSIVE_LOCK is used to

acquire an exclusive lock immediately upon opening a

session; if a lock cannot be acquired, the session is

closed and an error is returned. The value

VI_LOAD_CONFIG is used to configure attributes to values

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 60

specified by some external configuration utility; if this

value is not used, the session uses the default values

provided by this specification. Multiple access modes

can be used simultaneously by specifying a "bit-wise

OR" of the above values.

timeout IN If the accessMode parameter requests a lock, then this

parameter specifies the absolute time period (in

milliseconds) that the resource waits to get unlocked

before this operation returns an error.

vi OUT Unique logical identifier reference to a session.

Return Values

VI_SUCCESS Session opened successfully.

VI_SUCCESS_DEV_NPRESENT Session opened successfully, but the device at the

specified address is not responding.

VI_WARN_CONFIG_NLOADED The specified configuration either does not exist or

could not be loaded; using VISA-specified defaults.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given sesn does not support this operation. For

VISA, this operation is supported only by the Default

Resource Manager session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource not

present in the system.

VI_ERROR_ALLOC Insufficient system resources to open a session.

VI_ERROR_RSRC_BUSY The resource is valid, but VISA cannot currently

access it.

VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained because the

resource is already locked with a lock type

incompatible with the lock requested.

VI_ERROR_TMO A session to the resource could not be obtained within

the specified timeout period.

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located

or loaded.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified interface

number is not configured.

Description

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 61

This operation opens a session to the specified device. It returns a session identifier that

can be used to call any other operations of that device.

9.2.21 viOpenDefaultRM

Purpose

Return a session to the Default Resource Manager resource.

Syntax

ViStatus viOpenDefaultRM(ViPSession vi)

Parameters

vi OUT Unique logical identifier to a Default Resource

Manager session.

Return Values

VI_SUCCESS Session to the Default Resource Manager resource

created successfully.

VI_ERROR_SYSTEM_ERROR The VISA system failed to initialize.

VI_ERROR_ALLOC Insufficient system resources to create a session to the

Default Resource Manager resource.

VI_ERROR_INV_SETUP Some implementation-specific configuration file is

corrupt or does not exist.

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located

or loaded.

Description

This function must be called before any VISA operations can be invoked. The first call

to this function initializes the VISA system, including the Default Resource Manager

resource, and also returns a session to that resource. Subsequent calls to this function

return unique sessions to the same Default Resource Manager resource.

9.2.22 viParseRsrc

Purpose

Parse a resource string to get the interface information.

Syntax

ViStatus viParseRsrc(ViSession rmSesn, ViRsrc rsrcName, ViPUInt16 intfType,

ViPUInt16 intfNum)

Parameters

rmSesn IN Resource Manager session (should always be the

Default Resource Manager for VISA returned from

viOpenDefaultRM()).

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 62

rsrcName IN Unique symbolic name of a resource.

intfType OUT Interface type of the given resource string.

intfNum OUT Board number of the interface of the given resource

string.

Description

This operation parses a resource string to verify its validity. It should succeed for all

strings returned by viFindRsrc() and recognized by viOpen(). This operation is useful if

you want to know what interface a given resource descriptor would use without actually

opening a session to it.

The values returned in intfType and intfNum correspond to the attributes

VI_ATTR_INTF_TYPE and VI_ATTR_INTF_NUM. These values would be the same if a user

opened that resource with viOpen() and queried the attributes with viGetAttribute().

9.2.23 viParseRsrcEx

Purpose

Parse a resource string to get extended interface information.

Syntax

ViStatus viParseRsrcEx(ViSession rmSesn, ViRsrc rsrcName, ViPUInt16 intfType,

ViPUInt16 intfNum, ViChar rsrcClass[], ViChar expandedUnaliasedName[], ViChar

aliasIfExists[])

Parameters

rmSesn IN Resource Manager session (should always be the

Default Resource Manager for VISA returned from

viOpenDefaultRM()).

rsrcName IN Unique symbolic name of a resource.

intfType OUT Interface type of the given resource string.

intfNum OUT Board number of the interface of the given resource

string.

rsrcClass OUT Specifies the resource class (for example, “INSTR”) of

the given resource string.

expandedUnaliasedN

ame
OUT This is the expanded version of the given resource

string. The format should be similar to the VISA-

defined canonical resource name.

aliasIfExists OUT Specifies the user-defined alias for the given resource

string.

Return Values

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 63

VI_SUCCESS Resource string is valid.

VI_WARN_EXT_FUNC_NIMPL The operation succeeded, but a lower level driver did

not implement the extended functionality.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given sesn does not support this operation. For

VISA, this operation is supported only by the Default

Resource Manager session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource not

present in the system.

VI_ERROR_ALLOC Insufficient system resources to parse the string.

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located

or loaded.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified interface

number is not configured.

Description

This operation parses a resource string to verify its validity. It should succeed for all

strings returned by viFindRsrc() and recognized by viOpen(). This operation is useful if

you want to know what interface a given resource descriptor would use without actually

opening a session to it.

The values returned in intfType, intfNum, and rsrcClass correspond to the attributes

VI_ATTR_INTF_TYPE, VI_ATTR_INTF_NUM, and VI_ATTR_RSRC_CLASS. These values would be

the same if a user opened that resource with viOpen() and queried the attributes with

viGetAttribute().

The value returned in expandedUnaliasedName should in most cases be identical to the

VISA-defined canonical resource name. However, there may be cases where the

canonical name includes information that the driver may not know until the resource has

actually been opened. In these cases, the value returned in this parameter must be

semantically similar.

The value returned in aliasIfExists allows programmatic access to user-defined

aliases. If multiple aliases for a single resource are defined one alias is picked.

9.2.24 viPrintf

Purpose

Convert, format, and send the parameters arg1, arg2, … to the device as specified by

the format string (cf. Sec. 9.1.3).

Syntax

ViStatus viPrintf(ViSession vi, ViString writeFmt, arg1, arg2, ...)

Parameters

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 64

vi IN Unique logical identifier to a session.

writeFmt IN String describing the format for arguments.

arg1, arg2, … IN Parameters format string is applied to.

Return Values

VI_SUCCESS Parameters were successfully formatted.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_IO Could not perform write operation because of I/O error.

VI_ERROR_TMO Timeout expired before write operation completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not

supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer

because of insufficient system resources.

Description

This operation sends data to a device as specified by the format string. Before sending

the data, the operation formats the arg characters in the parameter list as specified in

the writeFmt string. The viWrite() operation performs the actual low-level I/O to the

device. As a result, you should not use the viWrite() and viPrintf() operations in the same

session. The writeFmt string follows the ANSI C format rules for printf.

9.2.25 viQueryf

Purpose

Perform a formatted write and read through a single operation invocation.

Syntax

ViStatus viQueryf(ViSession vi, ViString writeFmt, ViString readFmt, arg1, arg2,

...)

Parameters

vi IN Unique logical identifier to a session.

writeFmt IN ViString describing the format of write arguments.

readFmt IN ViString describing the format of read arguments.

arg1, arg2, ... IN

OUT

Parameters on which write and read format strings are

applied.

Return Values

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 65

VI_SUCCESS Successfully completed the Query operation.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_IO Could not perform read/write operation because of I/O

error.

VI_ERROR_TMO Timeout occurred before read/write operation

completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string is

invalid.

VI_ERROR_NSUP_FMT The format specifier is not supported for current

argument type.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer

because of insufficient system resources.

Description

This operation provides a mechanism of "Send, then receive" typical to a command

sequence from a commander device. In this manner, the response generated from the

command can be read immediately.

This operation is a combination of the viPrintf() and viScanf() operations. The first n

arguments corresponding to the first format string are formatted by using the writeFmt

string and then sent to the device. The write buffer is flushed immediately after the write

portion of the operation completes. After these actions, the response data is read from

the device into the remaining parameters (starting from parameter n+1) using the

readFmt string.

This operation returns the same VISA status codes as viPrintf(), viScanf(), and

viFlush().

9.2.26 viRead

Purpose

Read data from device synchronously.

Syntax

ViStatus viRead(ViSession vi, ViPBuf buf, ViUInt32 cnt, ViPUInt32 retCnt)

Parameters

vi IN Unique logical identifier to a session.

buf OUT Represents the location of a buffer to receive data from

device.

cnt IN Number of bytes to be read.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 66

retCnt OUT Represents the location of an integer that will be set to

the number of bytes actually transferred.

Return Values

VI_SUCCESS The operation completed successfully and the END

indicator was received (for interfaces that have END

indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error during

transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start read operation because setup is invalid

(due to attributes being set to an inconsistent state).

VI_ERROR_NCIC The interface associated with the given vi is not

currently the controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC

are deasserted).

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character

was not read from the hardware before the next

character arrived.

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Description

The read operation synchronously transfers data. The data read is to be stored in the

buffer represented by buf. This operation returns only when the transfer terminates. Only

one read operation can occur at any one time.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 67

9.2.27 viReadSTB

Purpose

Read a status byte of the service request.

Syntax

ViStatus viReadSTB(ViSession vi, ViPUInt16 status)

Parameters

vi IN Unique logical identifier to the session.

status OUT Service request status byte.

Return Values

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_SRQ_NOCCURRED Service request has not been received for the session.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is not

currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and

NDAC are deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due

to attributes being set to an inconsistent state).

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Description

This operation reads a service request status from a service requester (the message-

based device). For example, on the IEEE 488.2 interface, the message is read by polling

devices; for other types of interfaces, a message is sent in response to a service request

to retrieve status information. For a session to a Serial device or TCP/IP socket, if

VI_ATTR_IO_PROT is VI_PROT_4882_STRS, the device is sent the string “*STB?\n”, and then

the device’s status byte is read; otherwise, this operation is not valid. If the status

information is only one byte long, the most significant byte is returned with the zero value.

If the service requester does not respond in the actual timeout period, VI_ERROR_TMO is

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 68

returned. For a session to a USB instrument, this function sends the READ_STATUS_BYTE

command on the control pipe.

9.2.28 viReadToFile

Purpose

Read data synchronously, and store the transferred data in a file.

Syntax

ViStatus viReadToFile(ViSession vi, ViConstString filename, ViUInt32 cnt,

ViPUInt32 retCnt)

Parameters

vi IN Unique logical identifier to a session.

filename IN Name of file to which data will be written.

cnt IN Number of bytes to be read.

retCnt OUT Number of bytes actually transferred.

Return Values

VI_SUCCESS The operation completed successfully and the END

indicator was received (for interfaces that have END

indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error during

transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start read operation because setup is invalid

(due to attributes being set to an inconsistent state).

VI_ERROR_NCIC The interface associated with the given vi is not

currently the controller in charge.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 69

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC

are deasserted).

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character

was not read from the hardware before the next

character arrived.

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_FILE_ACCESS An error occurred while trying to open the specified file.

Possible reasons include an invalid path or lack of

access rights.

VI_ERROR_FILE_IO An error occurred while accessing the specified file.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Description

This read operation synchronously transfers data. The file specified in fileName is

opened in binary write-only mode. If the value of VI_ATTR_FILE_APPEND_EN is VI_FALSE,

any existing contents are destroyed; otherwise, the file contents are preserved. The data

read is written to the file. This operation returns only when the transfer terminates.

This operation is useful for storing raw data to be processed later.

9.2.29 viScanf

Purpose

Read, convert, and format data using the format specifier (cf. Sec. 9.1.4). Store the

formatted data in the arg1, arg2 parameters.

Syntax

ViStatus viScanf(ViSession vi, ViString readFmt, arg1, arg2, ...)

Parameters

vi IN Unique logical identifier to a session.

readFmt IN String describing the format for arguments.

arg1, arg2, … OUT A list with the variable number of parameters into which

the data is read and the format string is applied.

Return Values

VI_SUCCESS Data was successfully read and formatted into arg

parameter(s).

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 70

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_IO Could not perform read operation because of I/O error.

VI_ERROR_TMO Timeout expired before read operation completed.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer

because of insufficient system resources.

Description

This operation receives data from a device, formats it by using the format string, and

stores the resultant data in the arg parameter list. The format string can have format

specifier sequences, white characters, and ordinary characters. The white characters—

blank, vertical tabs, horizontal tabs, form feeds, new line/linefeed, and carriage return—

are ignored except in the case of %c and %[]. All other ordinary characters except %

should match the next character read from the device.

The format string consists of a %, followed by optional modifier flags, followed by one of

the format codes in that sequence. It is of the form %[modifier]format code where the

optional modifier describes the data format, while format code indicates the nature of

data (data type). One and only one format code should be performed at the specifier

sequence. A format specification directs the conversion to the next input arg. The results

of the conversion are placed in the variable that the corresponding argument points to,

unless the * assignment-suppressing character is given. In such a case, no arg is used

and the results are ignored.

The viScanf() operation accepts input until an END indicator is read or all the format

specifiers in the readFmt string are satisfied. Thus, detecting an END indicator before the

readFmt string is fully consumed will result in ignoring the rest of the format string. Also,

if some data remains in the buffer after all format specifiers in the readFmt string are

satisfied, the data will be kept in the buffer and will be used by the next viScanf operation.

9.2.30 viSetAttribute

Purpose

Set the state of an attribute.

Syntax

ViStatus viSetAttribute(ViObject vi, ViAttr attrName, ViAttrState attrValue)

Parameters

vi IN Unique logical identifier to a session, event, or find list.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 71

attrName IN Session, event, or find list attribute for which the state

is modified.

attrValue IN The state of the attribute to be set for the specified

resource. The interpretation of the individual attribute

value is defined by the resource.

Return Values

VI_SUCCESS Attribute value set successfully.

VI_WARN_NSUP_ATTR_STATE Although the specified attribute state is valid, it is not

supported by this implementation.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced

session, event, or find list.

VI_ERROR_NSUP_ATTR_STATE The specified state of the attribute is not valid, or is not

supported as defined by the session, event, or find list.

VI_ERROR_ATTR_READONLY The specified attribute is read-only.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

Description

The viSetAttribute() operation is used to modify the state of an attribute for the

specified session, event, or find list.

9.2.31 viSetBuf

Purpose

Set the size for the formatted I/O and/or serial communication buffer(s).

Syntax

ViStatus viSetBuf(ViSession vi, ViUInt16 mask, ViUInt32 size)

Parameters

vi IN Unique logical identifier to a session.

mask IN Specifies the type of buffer.

size IN The size to be set for the specified buffer(s).

Return Values

VI_SUCCESS Buffer size set successfully.

VI_WARN_NSUP_BUF The specified buffer is not supported.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 72

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_ALLOC The system could not allocate the buffer(s) of the

specified size because of insufficient system

resources.

VI_ERROR_INV_MASK The system cannot set the buffer for the given mask.

Description

This operation changes the buffer size of the read and/or write buffer for formatted I/O

and/or serial communication. The mask parameter specifies which buffer to set the size

of. The mask parameter can specify multiple buffers by bit-ORing any of the following

values together: VI_READ_BUF (Formatted I/O read buffer), VI_WRITE_BUF (Formatted I/O

write buffer), VI_IO_IN_BUF (I/O communication receive buffer), and VI_IO_OUT_BUF (I/O

communication) transmit buffer.

9.2.32 viSPrintf

Purpose

Same as viPrintf(), except the data is written to a user-specified buffer rather than the

device (cf. Sec. 9.1.3).

Syntax

ViStatus viSPrintf(ViSession vi, ViPBuf buf, ViString writeFmt, arg1, arg2...)

Parameters

vi IN Unique logical identifier to a session.

buf OUT Buffer where data is to be written.

writeFmt IN String describing the format for arguments.

arg1, arg2, … IN A list containing the variable number of parameters on

which the format string is applied. The formatted data

is written to the specified device.

Return Values

VI_SUCCESS Parameters were successfully formatted.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not

supported.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 73

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer

because of insufficient system resources.

Description

This operation is similar to viPrintf(), except that the output is not written to the device;

it is written to the user-specified buffer. This output buffer will be NULL terminated.

9.2.33 viSScanf

Purpose

Same as viScanf(), except that the data is read from a user-specified buffer instead of

a device (cf. Sec. 9.1.4).

Syntax

ViStatus viSScanf(ViSession vi, ViBuf buf, ViString readFmt, arg1, arg2, ...)

Parameters

vi IN Unique logical identifier to a session.

buf IN Buffer from which data is read and formatted.

readFmt IN String describing the format for arguments.

arg1, arg2, … OUT A list with the variable number of parameters into which

the data is read and the format string is applied.

Return Values

VI_SUCCESS Data was successfully read and formatted into arg

parameter(s).

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer

because of insufficient system resources.

Description

This operation is similar to viScanf(), except that the data is read from a user-specified

buffer rather than a device.

9.2.34 viStatusDesc

Purpose

Return a user-readable description of the status code passed to the operation.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 74

Syntax

ViStatus viStatusDesc(ViObject vi, ViStatus status, ViChar desc[])

Parameters

vi IN Unique logical identifier to a session, event, or find list.

status IN Status code to interpret.

desc OUT The user-readable string interpretation of the status

code passed to the operation.

Return Values

VI_SUCCESS Description successfully returned.

VI_WARN_UNKNOWN_STATUS The status code passed to the operation could not be

interpreted.

Description

The viStatusDesc() operation is used to retrieve a user-readable string that describes

the status code presented.

9.2.35 viUninstallHandler

Purpose

Uninstall handlers for events.

Syntax

ViStatus viUninstallHandler(ViSession vi, ViEventType eventType, ViHndlr handler,

ViAddr userHandle)

Parameters

vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

handler IN Interpreted as a valid reference to a handler to be

uninstalled by a client application.

userHandle IN A value specified by an application that can be used

for identifying handlers uniquely in a session for an

event.

Return Values

VI_SUCCESS Event handler successfully uninstalled.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 75

VI_ERROR_INV_HNDLR_REF Either the specified handler reference or the user

context value (or both) does not match any installed

handler.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified

event.

Description

This operation allows client applications to uninstall handlers for events on sessions.

Applications should also specify the value in the userHandle parameter that was passed

while installing the handler. VISA identifies handlers uniquely using the handler

reference and this value. All the handlers, for which the handler reference and the value

matches, are uninstalled. The following tables list all the VISA-defined values and

corresponding actions of uninstalling handlers.

9.2.36 viUnlock

Purpose

Relinquish a lock for the specified resource.

Syntax

ViStatus viUnlock(ViSession vi)

Parameters

vi IN Unique logical identifier to a session.

Return Values

VI_SUCCESS Lock successfully relinquished.

VI_SUCCESS_NESTED_EXCLUSIV

E
Call succeeded, but this session still has nested

exclusive locks.

VI_SUCCESS_NESTED_SHARED Call succeeded, but this session still has nested

shared locks.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_SESN_NLOCKED The current session did not have any lock on the

resource.

Description

This operation is used to relinquish the lock previously obtained using the viLock()

operation.

9.2.37 viVPrintf

Purpose

Convert, format, and send params to the device as specified by the format string (cf Sec

9.1.3).

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 76

Syntax

ViStatus viVPrintf(ViSession vi, ViString writeFmt, ViVAList params)

Parameters

vi IN Unique logical identifier to a session.

writeFmt IN The format string to apply to parameters in ViVAList.

params IN A list containing the variable number of parameters on

which the format string is applied. The formatted data

is written to the specified device.

Return Values

VI_SUCCESS Parameters were successfully formatted.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_IO Could not perform write operation because of I/O error.

VI_ERROR_TMO Timeout expired before write operation completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not

supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer

because of insufficient system resources.

Description

This operation is similar to viPrintf(), except that the ViVAList parameters list provides

the parameters rather than separate arg parameters.

9.2.38 viVQueryf

Purpose

Perform a formatted write and read through a single operation invocation.

Syntax

ViStatus viVQueryf(ViSession vi, ViString writeFmt, ViString readFmt, ViVAList

params)

Parameters

vi IN Unique logical identifier to a session.

writeFmt IN The format string is applied to write parameters in

ViVAList.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 77

readFmt IN The format string to applied to read parameters in

ViVAList.

params IN

OUT

A list containing the variable number of write and read

parameters. The write parameters are formatted and

written to the specified device. The read parameters

store the data read from the device after the format

string is applied to the data.

Return Values

VI_SUCCESS Successfully completed the Query operation.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_IO Could not perform read/write operation because of I/O

error.

VI_ERROR_TMO Timeout occurred before read/write operation

completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string is

invalid.

VI_ERROR_NSUP_FMT The format specifier is not supported for current

argument type.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer

because of insufficient system resources.

Description

This operation is similar to ViQueryf(), except that the ViVAList parameters list provides

the parameters rather than the separate arg parameter list.

9.2.39 viVScanf

Purpose

Read, convert, and format data using the format specifier (cf. Sec. 9.1.4). Store the

formatted data in params.

Syntax

ViStatus viVScanf(ViSession vi, ViString readFmt, ViVAList params)

Parameters

vi IN Unique logical identifier to a session.

readFmt IN The format string to apply to parameters in ViVAList.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 78

params OUT A list with the variable number of parameters into which

the data is read and the format string is applied.

Return Values

VI_SUCCESS Data was successfully read and formatted into params.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_IO Could not perform read operation because of I/O error.

VI_ERROR_TMO Timeout expired before read operation completed.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer

because of insufficient system resources.

Description

This operation is similar to viScanf(), except that the ViVAList parameters list provides

the parameters rather than separate arg parameters.

9.2.40 viVSPrintf

Purpose

Same as viVPrintf(), except that the data is written to a user-specified buffer rather

than a device.

Syntax

ViStatus viVSPrintf(ViSession vi, ViPBuf buf, ViString writeFmt, ViVAList params)

Parameters

vi IN Unique logical identifier to a session.

buf OUT Buffer where data is to be written.

writeFmt IN The format string to apply to parameters in ViVAList.

params IN A list containing the variable number of parameters on

which the format string is applied. The formatted data

is written to the specified device.

Return Values

VI_SUCCESS Parameters were successfully formatted.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 79

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not

supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer

because of insufficient system resources.

Description

This operation is similar to viVPrintf(), except that the output is not written to the device;

it is written to the user-specified buffer. This output buffer will be NULL terminated.

9.2.41 viVSScanf

Purpose

Same as viVScanf(), except that the data is read from a user-specified buffer instead of

a device.

Syntax

ViStatus viVSScanf(ViSession vi, ViBuf buf, ViString readFmt, ViVAList params)

Parameters

vi IN Unique logical identifier to a session.

buf IN Buffer from which data is read and formatted.

readFmt IN The format string to apply to parameters in ViVAList.

params OUT A list with the variable number of parameters into which

the data is read and the format string is applied.

Return Values

VI_SUCCESS Data was successfully read and formatted into params.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer

because of insufficient system resources.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 80

Description

This operation is similar to viVScanf(), except that the data is read from a user-specified

buffer rather than a device.

9.2.42 viWaitOnEvent

Purpose

Wait for an occurrence of the specified event for a given session.

Syntax

ViStatus viWaitOnEvent(ViSession vi, ViEventType inEventType, ViUInt32 timeout,

ViPEventType outEventType, ViPEvent outContext)

Parameters

vi IN Unique logical identifier to a session.

inEventType IN Logical identifier of the event(s) to wait for.

timeout IN Absolute time period in time units that the resource

shall wait for a specified event to occur before returning

the time elapsed error. The time unit is in milliseconds.

outEventType OUT Logical identifier of the event actually received.

outContext OUT A handle specifying the unique occurrence of an event.

Return Values

VI_SUCCESS Wait terminated successfully on receipt of an event

occurrence. The queue is empty.

VI_SUCCESS_QUEUE_NEMPTY Wait terminated successfully on receipt of an event

notification. There is still at least one more event

occurrence of the type specified by inEventType

available for this session.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_TMO Specified event did not occur within the specified time

period.

VI_ERROR_NENABLED The session must be enabled for events of the

specified type in order to receive them.

Description

The viWaitOnEvent() operation suspends execution of a thread of application and waits

for an event inEventType for a time period not to exceed that specified by timeout. Refer

to individual event descriptions for context definitions. If the specified inEventType is

VI_ALL_ENABLED_EVENTS, the operation waits for any event that is enabled for the given

session. If the specified timeout value is VI_TMO_INFINITE, the operation is suspended

indefinitely.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 81

9.2.43 viWrite

Purpose

Write data to device synchronously.

Syntax

ViStatus viWrite(ViSession vi, ViBuf buf, ViUInt32 cnt, ViPUInt32 retCnt)

Parameters

vi IN Unique logical identifier to a session.

buf IN Represents the location of a data block to be sent to

device.

cnt IN Specifies number of bytes to be written.

retCnt OUT Represents the location of an integer that will be set to

the number of bytes actually transferred.

Return Values

VI_SUCCESS Transfer completed.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start write operation because setup is invalid

(due to attributes being set to an inconsistent state).

VI_ERROR_NCIC The interface associated with the given vi is not

currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC

are deasserted).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Description

The write operation synchronously transfers data. The data to be written is in the buffer

represented by buf. This operation returns only when the transfer terminates. Only one

synchronous write operation can occur at any one time

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 82

9.2.44 viWriteFromFile

Purpose

Take data from a file and write it out synchronously.

Syntax

ViStatus viWriteFromFile(ViSession vi, ViConstString filename, ViUInt32 cnt,

ViPUInt32 retCnt)

Parameters

vi IN Unique logical identifier to a session.

fileName IN Name of file from which data will be read.

cnt IN Number of bytes to be written.

retCnt OUT Number of bytes actually transferred.

Return Values

VI_SUCCESS Transfer completed.

VI_ERROR_INV_SESSION,

VI_ERROR_INV_OBJECT
The given session or object reference is invalid (both

are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this

kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is not

currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC

are deasserted).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_FILE_ACCESS An error occurred while trying to open the specified file.

Possible reasons include an invalid path or lack of

access rights.

VI_ERROR_FILE_IO An error occurred while accessing the specified file.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 83

Description

This write operation synchronously transfers data. The file specified in fileName is

opened in binary read-only mode, and the data (up to end-of-file or the number of bytes

specified in count) is read. The data is then written to the device. This operation returns

only when the transfer terminates.

This operation is useful for sending data that was already processed and/or formatted.

9.3 Attributes

In the following sections lists of VISA attributes for all available instrument classes are

presented.

9.3.1 Instrument class: All

9.3.1.1 VI_ATTR_MAX_QUEUE_LENGTH
Information

R/W Local ViUInt32 1h to FFFFFFFFh

Description

Specifies the maximum number of events that can be queued at any time on the given

session.

9.3.1.2 VI_ATTR_RM_SESSION
Information

RO Local ViSession N/A

Description

Specifies the session of the Resource Manager that was used to open this session.

9.3.1.3 VI_ATTR_RSRC_CLASS
Information

RO Global ViString N/A

Description

Specifies the resource class (for example, “INSTR”) .

9.3.1.4 VI_ATTR_RSRC_IMPL_VERSION
Information

RO Global ViVersion 0h to FFFFFFFFh

Description

Resource version that uniquely identifies each of the different revisions or

implementations of a resource.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 84

9.3.1.5 VI_ATTR_RSRC_LOCK_STATE
Information

RO Global
ViAccessMo

de
VI_NO_LOCK, VI_EXCLUSIVE_LOCK, VI_SHARED_LOCK

Description

The current locking state of the resource, reflecting any locks granted to an open session

to the device using the same interface and protocol. The resource can be unlocked,

locked with an exclusive lock, or locked with a shared lock.

9.3.1.6 VI_ATTR_RSRC_MANF_ID
Information

RO Global ViUInt16 0h to 3FFFh

Description

A value that corresponds to the VXI manufacturer ID of the manufacturer that created

the implementation.

9.3.1.7 VI_ATTR_RSRC_MANF_NAME
Information

RO Global ViString N/A

Description

A string that corresponds to the VXI manufacturer name of the manufacturer that created

the implementation.

9.3.1.8 VI_ATTR_RSRC_NAME
Information

RO Global ViRsrc N/A

Description

The unique identifier for a resource.

9.3.1.9 VI_ATTR_RSRC_SPEC_VERSION
Information

RO Global ViVersion 00500400h

Description

Resource version that uniquely identifies the version of the VISA specification to which

the implementation is compliant.

9.3.1.10 VI_ATTR_USER_DATA
Information

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 85

R/W Local ViAddr N/A

Description

Data used privately by the application for a particular session. This data is not used by

VISA for any purposes and is provided to the application for its own use.

9.3.1.11 VI_ATTR_USER_DATA_32
Information

R/W Local ViUInt32 0h to FFFFFFFFh

Description

Data used privately by the application for a particular session. This data is not used by

VISA for any purposes and is provided to the application for its own use.

9.3.1.12 VI_ATTR_USER_DATA_64
Information

R/W Local ViUInt64 0h to FFFFFFFFFFFFFFFFh

Description

Data used privately by the application for a particular session. This data is not used by

VISA for any purposes and is provided to the application for its own use. Defined only

for frameworks that are 64-bit native.

9.3.1.13 VI_RS_ATTR_TCPIP_FIND_RSRC_MODE
Information

R/W Global ViUInt32

VI_RS_FIND_MODE_NONE, VI_RS_FIND_MODE_CONFIG,

VI_RS_FIND_MODE_VXI11, VI_RS_FIND_MODE_MDNS

Description

Mode used for discovering devices on the LAN. Different modes may be selected by

applying an OR-operation to the desired modes. If VI_RS_FIND_MODE_VXI11 is active

devices are found by a VXI-11 broadcast. If VI_RS_FIND_MODE_MDNS is active, devices are

found via mDNS/Bonjour.

Note that for this R&S specific attribute the RSVISA_EXTENSION compiler macro has to be

defined.

9.3.1.14 VI_RS_ATTR_TCPIP_FIND_RSRC_TMO
Information

R/W Global ViUInt32 0h to FFFFFFFFh

Description

Timeout for VXI Discovery in Milliseconds.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 86

Note that for this R&S specific attribute the RSVISA_EXTENSION compiler macro has to be

defined.

9.3.1.15 VI_RS_ATTR_LXI_MANF

Information

RO Global ViString

Description

Manufacturer of the LXI device. This is the first part of a *IDN? query. However, this

information is not obtained by a *IDN? query, but from the LXI information provided by

the device via the LXI search. Therefore it is only available for devices found by LXI

discovery.

Find lists handles returned by viFindRsrc can be queried for this attribute. The value

returned corresponds to the last device returned by viFindRsrc or viFindNext,

respectively.

Note that for this R&S specific attribute the RSVISA_EXTENSION compiler macro has to be

defined.

9.3.1.16 VI_RS_ATTR_LXI_MODEL

Information

RO Global ViString

Description

Model name of the LXI device. This is the second part of a *IDN? query. For details see

9.3.1.15.

Note that for this R&S specific attribute the RSVISA_EXTENSION compiler macro has to be

defined.

9.3.1.17 VI_RS_ATTR_LXI_SERIAL

Information

RO Global ViString

Description

Serial number of the LXI device. This is the third part of a *IDN? query. For details see

9.3.1.15.

Note that for this R&S specific attribute the RSVISA_EXTENSION compiler macro has to be

defined.

9.3.1.18 VI_RS_ATTR_LXI_VERSION

Information

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 87

RO Global ViString

Description

Firmware version of the LXI device. This is the fourth part of a *IDN? query. For details

see 9.3.1.15.

Note that for this R&S specific attribute the RSVISA_EXTENSION compiler macro has to be

defined.

9.3.1.19 VI_RS_ATTR_LXI_DESCRIPTION

Information

RO Global ViString

Description

User defined description of the LXI device. For details see 9.3.1.15.

Note that for this R&S specific attribute the RSVISA_EXTENSION compiler macro has to be

defined.

9.3.1.20 VI_RS_ATTR_LXI_HOSTNAME

Information

RO Global ViString

Description

Hostname of the LXI device. For details see 9.3.1.15.

Note that for this R&S specific attribute the RSVISA_EXTENSION compiler macro has to be

defined.

9.3.2 Instrument class: INSTR

9.3.2.1 VI_ATTR_4882_COMPLIANT
Information

RO Global ViBoolean VI_TRUE, VI_FALSE

Description

Specifies whether the device is 488.2 compliant.

9.3.2.2 VI_ATTR_ASRL_AVAIL_NUM
Information

RO Global ViUInt32 0 to FFFFFFFFh

Description

todo

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 88

9.3.2.3 VI_ATTR_ASRL_BAUD
Information

RW Global ViUInt32 0 to FFFFFFFFh

Description

Baud rate of the interface. It is represented as an unsigned 32-bit integer so that any

baud rate can be used, but it usually requires a commonly used rate such as 300, 1200,

2400, or 9600 baud.

9.3.2.4 VI_ATTR_ASRL_DATA_BITS
Information

RW Global ViUInt16 5 to 8

Description

Number of data bits contained in each frame (from 5 to 8). The data bits for each frame

are located in the low-order bits of every byte stored in memory.

9.3.2.5 VI_ATTR_ASRL_PARITY
Information

RW Global ViUInt16

VI_ASRL_PAR_NONE, VI_ASRK_PAR_ODD,

VI_ASRL_PAR_EVEN, VI_ASRL_PAR_MARK,

VI_ASRL_PAR_SPACE

Description

This is the parity used with every frame transmitted and received. VI_ASRL_PAR_MARK

means that the parity bit exists and is always 1. VI_ASRL_PAR_SPACE means that the

parity bit exists and is always 0.

9.3.2.6 VI_ATTR_ASRL_STOP_BITS
Information

RW Global ViUInt16

VI_ASRL_STOP_ONE, VI_ASRL_STOP_ONE5,

VI_ASRL_STOP_TWO

Description

This is the number of stop bits used to indicate the end of a frame. The value

VI_ASRL_STOP_ONE5 indicates one-and-one-half (1.5) stop bits.

9.3.2.7 VI_ATTR_ASRL_FLOW_CNTRL
Information

RW Global ViUInt16

VI_ASRL_FLOW_NONE, VI_ASRL_FLOW_XON_XOFF,

VI_ASRL_FLOW_RTS_CTS, VI_ASRL_FLOW_DTR_DSR

Description

If this attribute is set to VI_ATTR_ASRL_FLOW_NONE, the transfer mechanism does not

use flow control, and buffers on both sides of the connection are assumed to be large

enough to hold all data transferred.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 89

If this attribute is set to VI_ATTR_ASRL_FLOW_XON_XOFF, the transfer mechanism

uses the XON and XOFF characters to perform flow control. The transfer mechanism

controls input flow by sending XOFF when the receive buffer is nearly full, and it controls

the output flow by suspending transmission when XOFF is received.

If this attribute is set to VI_ATTR_ASRL_FLOW_RTS_CTS, the transfer mechanism uses

the RTS output signal and the CTS input signal to perform flow control. The transfer

mechanism controls input flow by unasserting the RTS signal when the receive buffer is

nearly full, and it controls output flow by suspending the transmission when the CTS

signal is unasserted.

If this attribute is set to VI_ASRL_FLOW_DTR_DSR, the transfer mechanism uses the

DTR output signal and the DSR input signal to perform flow control. The transfer

mechanism controls input flow by unasserting the DTR signal when the receive buffer is

nearly full, and it controls output flow by suspending the transmission when the DSR

signal is unasserted.

This attribute can specify multiple flow control mechanisms by bit-ORing multiple values

together. However, certain combinations may not be supported by all serial ports and/or

operating systems

9.3.2.8 VI_ATTR_ASRL_END_IN
Information

RW Local ViUInt16

VI_ASRL_END_NONE, VI_ASRL_END_LAST_BIT,

VI_ASRL_END_TERMCHAR

Description

This attribute indicates the method used to terminate read operations. If it is set to

VI_ASRL_END_NONE, the read will not terminate until all of the requested data is

received (or an error occurs). If it is set to VI_ASRL_END_TERMCHAR, the read will

terminate as soon as the character in VI_ATTR_TERMCHAR is received. If it is set to

VI_ASRL_END_LAST_BIT, the read will terminate as soon as a character arrives with

its last bit set. For example, if VI_ATTR_ASRL_DATA_BITS is set to 8, then the read will

terminate when a character arrives with the 8th bit set.

9.3.2.9 VI_ATTR_ASRL_END_OUT
Information

RW Local ViUInt16

VI_ASRL_END_NONE, VI_ASRL_END_LAST_BIT,

VI_ASRL_END_TERMCHAR, VI_ASRL_END_BREAK

Description

This attribute indicates the method used to terminate write operations. If it is set to

VI_ASRL_END_NONE, the write will not append anything to the data being written. If it is

set to VI_ASRL_END_BREAK, the write will transmit a break after all the characters for

the write have been sent. If it is set to VI_ASRL_END_LAST_BIT, the write will send all

but the last character with the last bit clear, then transmit the last character with the last

bit set. For example, if VI_ATTR_ASRL_DATA_BITS is set to 8, then the write will clear

the 8th bit for all but the last character, then transmit the last character with the 8th bit

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 90

set. If it is set to VI_ASRL_END_TERMCHAR, the write will send the character in

VI_ATTR_TERMCHAR after the data being transmitted.

VI_ASRL_END_BREAK is not supported in R&S VISA.

9.3.2.10 VI_ATTR_ASRL_CTS_STATE
Information

RW Global ViInt16

VI_STATE_ASSERTED, VI_STATE_UNASSERTED,

VI_STATE_UNKNOWN

Description

This attribute shows the current state of the Clear To Send (CTS) input signal.

9.3.2.11 VI_ATTR_ASRL_DCD_STATE
Information

RW Global ViInt16

VI_STATE_ASSERTED, VI_STATE_UNASSERTED,

VI_STATE_UNKNOWN

Description

This attribute shows the current state of the Data Carrier Detect (DCD) input signal. The

DCD signal is often used by modems to indicate the detection of a carrier (remote

modem) on the telephone line. The DCD signal is also known as “Receive Line Signal

Detect (RLSD).”

9.3.2.12 VI_ATTR_ASRL_DSR_STATE
Information

RW Global ViInt16

VI_STATE_ASSERTED, VI_STATE_UNASSERTED,

VI_STATE_UNKNOWN

Description

This attribute shows the current state of the Data Set Ready (DSR) input signal.

9.3.2.13 VI_ATTR_ASRL_DTR_STATE
Information

RW Global ViInt16

VI_STATE_ASSERTED, VI_STATE_UNASSERTED,

VI_STATE_UNKNOWN

Description

This attribute is used to manually assert or unassert the Data Terminal Ready (DTR)

output signal.

9.3.2.14 VI_ATTR_ASRL_RI_STATE
Information

RW Global ViInt16

VI_STATE_ASSERTED, VI_STATE_UNASSERTED,

VI_STATE_UNKNOWN

Description

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 91

This attribute shows the current state of the Ring Indicator (RI) input signal. The RI signal

is often used by modems to indicate that the telephone line is ringing.

9.3.2.15 VI_ATTR_ASRL_RTS_STATE
Information

RW Global ViInt16

VI_STATE_ASSERTED, VI_STATE_UNASSERTED,

VI_STATE_UNKNOWN

Description

This attribute is used to manually assert or unassert the Request To Send (RTS) output

signal. When the VI_ATTR_ASRL_FLOW_CNTRL attribute is set to

VI_ASRL_FLOW_RTS_CTS, this attribute is ignored when changed, but can be read to

determine whether the background flow control is asserting or unasserting the signal.

9.3.2.16 VI_ATTR_ASRL_REPLACE_CHAR
Information

RW Local ViUInt8 0 to FFh

Description

This attribute specifies the character to be used to replace incoming characters that

arrive with errors (such as parity error).

9.3.2.17 VI_ATTR_ ASRL_XON_CHAR
Information

RW Local ViUInt8 0 to FFh

Description

This attribute specifies the value of the XON character used for XON/XOFF flow control

(both directions). If XON/XOFF flow control (software handshaking) is not being used,

the value of this attribute is ignored.

9.3.2.18 VI_ATTR_ ASRL_XOFF_CHAR
Information

RW Local ViUInt8 0 to FFh

Description

This attribute specifies the value of the XOFF character used for XON/XOFF flow control

(both directions). If XON/XOFF flow control (software handshaking) is not being used,

the value of this attribute is ignored.

9.3.2.19 VI_ATTR_DMA_ALLOW_EN
Information

RW Local ViBoolean VI_TRUE, VI_FALSE

Description

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 92

This attribute specifies whether I/O accesses should use DMA (VI_TRUE) or Programmed

I/O (VI_FALSE).

9.3.2.20 VI_ATTR_FILE_APPEND_EN
Information

RW Local ViBoolean VI_TRUE, VI_FALSE

Description

This attribute specifies whether viReadToFile() will overwrite (truncate) or append when

opening a file.

9.3.2.21 VI_ATTR_GPIB_PRIMARY_ADDR
Information

RO Global ViUInt16 0 to 30

Description

Primary address of the GPIB device used by the given session.

9.3.2.22 VI_ATTR_GPIB_READDR_EN
Information

R/W Local ViBoolean VI_TRUE, VI_FALSE

Description

This attribute specifies whether to use repeat addressing before each read or write

operation.

9.3.2.23 VI_ATTR_GPIB_REN_STATE
Information

RO Global ViInt16

VI_STATE_ASSERTED, VI_STATE_UNASSERTED,
VI_STATE_UNKNOWN

Description

This attribute returns the current state of the GPIB REN interface line.

9.3.2.24 VI_ATTR_GPIB_SECONDARY_ADDR
Information

RO Global ViUInt16 0 to 31, VI_NO_SEC_ADDR

Description

Secondary address of the GPIB device used by the given session.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 93

9.3.2.25 VI_ATTR_GPIB_UNADDR_EN
Information

R/W Local ViBoolean VI_TRUE, VI_FALSE

Description

This attribute specifies whether to unaddress the device (UNT and UNL) after each read

or write operation.

9.3.2.26 VI_ATTR_INTF_INST_NAME
Information

RO Global ViString N/A

Description

Human-readable text describing the given interface.

9.3.2.27 VI_ATTR_INTF_NUM
Information

RO Global ViUInt16 0 to FFFFh

Description

Board number for the given interface.

9.3.2.28 VI_ATTR_INTF_TYPE
Information

RO Global ViUInt16

VI_INTF_VXI, VI_INTF_GPIB, VI_INTF_GPIB_VXI,

VI_INTF_ASRL, VI_INTF_TCPIP, VI_INTF_USB

Description

Interface type of the given session.

9.3.2.29 VI_ATTR_IO_PROT
Information

R/W Local ViUInt16

VI_PROT_NORMAL, VI_PROT_FDC, VI_PROT_HS488,

VI_PROT_4882_STRS, VI_PROT_USBTMC_VENDOR

Description

Specifies which protocol to use. In GPIB, you can choose between normal and high

speed (HS488) data transfers. In ASRL and TCPIP systems, you can choose between

normal and 488-style transfers, in which case the viAssertTrigger() and viReadSTB()

operations send 488.2-defined strings.

9.3.2.30 VI_ATTR_MANF_ID
Information

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 94

RO Global ViUInt16 0 to FFFFh

Description

Manufacturer identification number of the device.

9.3.2.31 VI_ATTR_MANF_NAME
Information

RO Global ViString N/A

Description

This string attribute is the manufacturer’s name. The value of this attribute should be

used for display purposes only and not for programmatic decisions, as the value can be

different between VISA implementations and/or revisions.

9.3.2.32 VI_ATTR_MODEL_CODE
Information

RO Global ViUInt16 0 to FFFFh

Description

Model code for the device.

9.3.2.33 VI_ATTR_MODEL_NAME
Information

RO Global ViString N/A

Description

This string attribute is the model name of the device. The value of this attribute should

be used for display purposes only and not for programmatic decisions, as the value can

be different between VISA implementations and/or revisions.

9.3.2.34 VI_ATTR_RD_BUF_OPER_MODE
Information

R/W Local ViUInt16 VI_FLUSH_ON_ACCESS, VI_FLUSH_DISABLE

Description

Determines the operational mode of the read buffer. When the operational mode is set

to VI_FLUSH_DISABLE (default), the buffer is flushed only on explicit calls to viFlush().

If the operational mode is set to VI_FLUSH_ON_ACCESS, the buffer is flushed every time a

viScanf() operation completes.

9.3.2.35 VI_ATTR_RD_BUF_SIZE
Information

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 95

RO Local ViUInt32 N/A

Description

This attribute specifies the size of the formatted I/O read buffer. The user can modify this

value by calling viSetBuf().

9.3.2.36 VI_ATTR_SEND_END_EN
Information

R/W Local ViBoolean VI_TRUE, VI_FALSE

Description

Whether to assert END during the transfer of the last byte of the buffer.

9.3.2.37 VI_ATTR_SUPPRESS_END_EN
Information

R/W Local ViBoolean VI_TRUE, VI_FALSE

Description

Whether to suppress the END indicator termination. If this attribute is set to VI_TRUE, the

END indicator does not terminate read operations. If this attribute is set to VI_FALSE, the

END indicator terminates read operations.

9.3.2.38 VI_ATTR_TCPIP_ADDR
Information

RO Global ViString N/A

Description

This is the TCPIP address of the device to which the session is connected. This string

is formatted in dot-notation.

9.3.2.39 VI_ATTR_TCPIP_DEVICE_NAME
Information

RO Global ViString N/A

Description

This specifies the LAN device name used by the VXI-11 or HiSLIP protocol during

connection.

9.3.2.40 VI_ATTR_TCPIP_HISLIP_MAX_MESSAGE_KB
Information

R/W Local ViUInt32 0h – ffffffffh

Description

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 96

This is the maximum HiSLIP message size VISA will accept from a HiSLIP system in

units of kilobytes (1024 bytes). Defaults to 1024 (a 1 MB maximum message size).

9.3.2.41 VI_ATTR_TCPIP_HISLIP_OVERLAP_EN
Information

R/W Local ViBoolean VI_TRUE, VI_FALSE

Description

This enables HiSLIP ‘Overlap’ mode and its value defaults to the mode suggested by

the instrument on HiSLIP connection. If disabled, the connection uses ‘Synchronous’

mode to detect and recover from interrupted errors. If enabled, the connection uses

‘Overlapped’ mode to allow overlapped responses. If changed, VISA will do a Device

Clear operation to change the mode.

9.3.2.42 VI_ATTR_TCPIP_HISLIP_VERSION
Information

RO Local ViVersion N/A

Description

This is the HiSLIP protocol version used for a particular HiSLIP connetion. Currently,

HiSLIP version 1.0 would return a ViVersion value of 0x00100000.

9.3.2.43 VI_ATTR_TCPIP_HOSTNAME
Information

RO Global ViString N/A

Description

This specifies the host name of the device. If no host name is available, this attribute

returns an empty string.

9.3.2.44 VI_ATTR_TCPIP_IS_HISLIP
Information

RO Global ViBoolean VI_TRUE, VI_FALSE

Description

Specifies whether this resource uses the HiSLIP protocol.

9.3.2.45 VI_ATTR_TCPIP_PORT
Information

RO Global ViUInt16 0 to FFFFh

Description

This specifies the port number for a given TCPIP address. For a TCPIP SOCKET

resource, this is a required part of the address string.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 97

9.3.2.46 VI_ATTR_TERMCHAR
Information

R/W Local ViUInt8 0 to FFh

Description

Termination character. When the termination character is read and VI_ATTR_TERMCHAR_EN

is enabled during a read operation, the read operation terminates.

9.3.2.47 VI_ATTR_TERMCHAR_EN
Information

R/W Local ViBoolean VI_TRUE, VI_FALSE

Description

Flag that determines whether the read operation should terminate when a termination

character is received.

9.3.2.48 VI_ATTR_TMO_VALUE
Information

R/W Local ViUInt32

VI_TMO_IMMEDIATE,1 to FFFFFFFEh,
VI_TMO_INFINITE

Description

Minimum timeout value to use, in milliseconds. A timeout value of VI_TMO_IMMEDIATE

means that operations should never wait for the device to respond. A timeout value of

VI_TMO_INFINITE disables the timeout mechanism.

9.3.2.49 VI_ATTR_TRIG_ID
Information

R/W Local ViInt16

VI_TRIG_TTL0 to VI_TRIG_TTL7; VI_TRIG_ECL0 to

VI_TRIG_ECL5; VI_TRIG_STAR_SLOT1 to

VI_TRIG_STAR_SLOT12; VI_TRIG_STAR_VXI0 to
VI_TRIG_STAR_VXI2

Description

Identifier for the current triggering mechanism.

9.3.2.50 VI_ATTR_USB_INTFC_NUM
Information

RO Global ViInt16 0 to 254

Description

Specifies the USB interface number of this device to which this session is connected

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 98

9.3.2.51 VI_ATTR_USB_MAX_INTR_SIZE
Information

RW Local ViUInt16 0 to FFFFh

Description

Specifies the maximum number of bytes that this USB device will send on the interrupt

IN pipe. The default value is the same as the maximum packet size of the interrupt IN

pipe.

9.3.2.52 VI_ATTR_USB_PROTOCOL
Information

RO Global ViInt16 0 to 255

Description

Specifies the USB protocol number.

9.3.2.53 VI_ATTR_USB_SERIAL_NUM
Information

RO Global ViString N/A

Description

This string attribute is the serial number of the USB instrument. The value of this attribute

should be used for display purposes only and not for programmatic decisions.

9.3.2.54 VI_ATTR_WR_BUF_OPER_MODE
Information

R/W Local ViUInt16 VI_FLUSH_ON_ACCESS, VI_FLUSH_WHEN_FULL

Description

Determines the operational mode of the write buffer. When the operational mode is set

to VI_FLUSH_WHEN_FULL (default), the buffer is flushed when an END indicator is written to

the buffer, or when the buffer fills up.

If the operational mode is set to VI_FLUSH_ON_ACCESS, the write buffer is flushed under the

same conditions, and also every time a viPrintf() operation completes.

9.3.2.55 VI_ATTR_WR_BUF_SIZE
Information

RO Local ViUInt32 N/A

Description

This attribute specifies the size of the formatted I/O write buffer. The user can modify

this value by calling viSetBuf().

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 99

9.3.3 Instrument class: INTFC

9.3.3.1 VI_ATTR_DEV_STATUS_BYTE
Information

RW Global ViUInt8 0 to FFh

Description

This attribute specifies the 488-style status byte of the local controller associated with

this session.

If this attribute is written and bit 6 (0x40) is set, this device or controller will assert a

service request (SRQ) if it is defined for this interface.

9.3.3.2 VI_ATTR_DMA_ALLOW_EN
Information

RW Local ViBoolean VI_TRUE, VI_FALSE

Description

This attribute specifies whether I/O accesses should use DMA (VI_TRUE) or Programmed

I/O (VI_FALSE).

9.3.3.3 VI_ATTR_FILE_APPEND_EN
Information

RW Local ViBoolean VI_TRUE, VI_FALSE

Description

This attribute specifies whether viReadToFile() will overwrite (truncate) or append when

opening a file.

9.3.3.4 VI_ATTR_GPIB_ADDR_STATE
Information

RO Global ViInt16

VI_GPIB_UNADDRESSED, VI_GPIB_TALKER,
VI_GPIB_LISTENER

Description

This attribute shows whether the specified GPIB interface is currently addressed to talk

or listen, or is not addressed.

9.3.3.5 VI_ATTR_GPIB_ATN_STATE
Information

RO Global ViInt16

VI_STATE_ASSERTED, VI_STATE_UNASSERTED,
VI_STATE_UNKNOWN

Description

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 100

This attribute shows the current state of the GPIB ATN (ATtentioN) interface line.

9.3.3.6 VI_ATTR_GPIB_CIC_STATE
Information

RO Global ViBoolean VI_TRUE, VI_FALSE

Description

This attribute shows whether the specified GPIB interface is currently CIC (controller in

charge).

9.3.3.7 VI_ATTR_GPIB_HS488_CBL_LEN
Information

RW Global ViInt16

1 to 15, VI_GPIB_HS488_DISABLED,
VI_GPIB_HS488_NIMPL

Description

This attribute specifies the total number of meters of GPIB cable used in the specified

GPIB interface. If HS488 is not implemented, querying this attribute should return the

value VI_GPIB_HS488_NIMPL. On these systems, trying to set this attribute value will return

the error VI_ERROR_NSUP_ATTR_STATE.

9.3.3.8 VI_ATTR_GPIB_NDAC_STATE
Information

RO Global ViInt16

VI_STATE_ASSERTED, VI_STATE_UNASSERTED,
VI_STATE_UNKNOWN

Description

This attribute shows the current state of the GPIB NDAC (Not Data ACcepted) interface

line.

9.3.3.9 VI_ATTR_GPIB_PRIMARY_ADDR
Information

RW Global ViUInt16 0 to 30

Description

Primary address of the local GPIB controller used by the given session.

9.3.3.10 VI_ATTR_GPIB_REN_STATE
Information

RO Global ViInt16

VI_STATE_ASSERTED, VI_STATE_UNASSERTED,
VI_STATE_UNKNOWN

Description

This attribute returns the current state of the GPIB REN (Remote ENable) interface line.

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 101

9.3.3.11 VI_ATTR_GPIB_SECONDARY_ADDR
Information

RW Global ViUInt16 0 to 31, VI_NO_SEC_ADDR

Description

Secondary address of the local GPIB controller used by the given session.

9.3.3.12 VI_ATTR_GPIB_SRQ_STATE
Information

RO Global ViInt16

VI_STATE_ASSERTED, VI_STATE_UNASSERTED,
VI_STATE_UNKNOWN

Description

This attribute shows the current state of the GPIB SRQ (Service ReQuest) interface line.

9.3.3.13 VI_ATTR_GPIB_SYS_CNTRL_STATE
Information

RW Global ViBoolean VI_TRUE, VI_FALSE

Description

This attribute shows whether the specified GPIB interface is currently the system

controller. In some implementations, this attribute may be modified only through a

configuration utility. On these systems, this attribute is read only (RO).

9.3.3.14 VI_ATTR_INTF_INST_NAME
Information

RO Global ViString N/A

Description

Human-readable text describing the given interface.

9.3.3.15 VI_ATTR_INTF_NUM
Information

RO Global ViUInt16 0 to FFFFh

Description

Board number for the given interface.

9.3.3.16 VI_ATTR_INTF_TYPE
Information

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 102

RO Global ViUInt16

VI_INTF_VXI, VI_INTF_GPIB, VI_INTF_GPIB_VXI,

VI_INTF_TCPIP, VI_INTF_USB

Description

Interface type of the given session.

9.3.3.17 VI_ATTR_RD_BUF_OPER_MODE
Information

R/W Local ViUInt16 VI_FLUSH_ON_ACCESS, VI_FLUSH_DISABLE

Description

Determines the operational mode of the read buffer. When the operational mode is set

to VI_FLUSH_DISABLE (default), the buffer is flushed only on explicit calls to viFlush().

If the operational mode is set to VI_FLUSH_ON_ACCESS, the buffer is flushed every time a

viScanf() operation completes.

9.3.3.18 VI_ATTR_RD_BUF_SIZE
Information

RO Local ViUInt32 N/A

Description

This attribute specifies the size of the formatted I/O read buffer. The user can modify this

value by calling viSetBuf().

9.3.3.19 VI_ATTR_SEND_END_EN
Information

R/W Local ViBoolean VI_TRUE, VI_FALSE

Description

Whether to suppress the END indicator termination. If this attribute is set to VI_TRUE, the

END indicator does not terminate read operations. If this attribute is set to VI_FALSE, the

END indicator terminates read operations.

9.3.3.20 VI_ATTR_TERMCHAR
Information

R/W Local ViUInt8 0 to FFh

Description

Termination character. When the termination character is read and VI_ATTR_TERMCHAR_EN

is enabled during a read operation, the read operation terminates.

9.3.3.21 VI_ATTR_TERMCHAR_EN
Information

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 103

R/W Local ViBoolean VI_TRUE, VI_FALSE

Description

Flag that determines whether the read operation should terminate when a termination

character is received.

9.3.3.22 VI_ATTR_TMO_VALUE
Information

R/W Local ViUInt32

VI_TMO_IMMEDIATE,1 to FFFFFFFEh,
VI_TMO_INFINITE

Description

Minimum timeout value to use, in milliseconds. A timeout value of VI_TMO_IMMEDIATE

means that operations should never wait for the device to respond. A timeout value of

VI_TMO_INFINITE disables the timeout mechanism.

9.3.3.23 VI_ATTR_WR_BUF_OPER_MODE
Information

R/W Local ViUInt16 VI_FLUSH_ON_ACCESS, VI_FLUSH_WHEN_FULL

Description

Determines the operational mode of the write buffer. When the operational mode is set

to VI_FLUSH_WHEN_FULL (default), the buffer is flushed when an END indicator is written to

the buffer, or when the buffer fills up.

If the operational mode is set to VI_FLUSH_ON_ACCESS, the write buffer is flushed under the

same conditions, and also every time a viPrintf() operation completes.

9.3.3.24 VI_ATTR_WR_BUF_SIZE
Information

RO Local ViUInt32 N/A

Description

This attribute specifies the size of the formatted I/O write buffer. The user can modify

this value by calling viSetBuf().

9.3.4 Instrument class: SOCKET

9.3.4.1 VI_ATTR_DMA_ALLOW_EN
Information

RW Local ViBoolean VI_TRUE, VI_FALSE

Description

This attribute specifies whether I/O accesses should use DMA (VI_TRUE) or Programmed

I/O (VI_FALSE).

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 104

9.3.4.2 VI_ATTR_FILE_APPEND_EN
Information

RW Local ViBoolean VI_TRUE, VI_FALSE

Description

This attribute specifies whether viReadToFile() will overwrite (truncate) or append when

opening a file.

9.3.4.3 VI_ATTR_INTF_INST_NAME
Information

RO Global ViString N/A

Description

Human-readable text describing the given interface.

9.3.4.4 VI_ATTR_INTF_NUM
Information

RO Global ViUInt16 0 to FFFFh

Description

Board number for the given interface.

9.3.4.5 VI_ATTR_INTF_TYPE
Information

RO Global ViUInt16

VI_INTF_VXI, VI_INTF_GPIB, VI_INTF_GPIB_VXI,

VI_INTF_TCPIP, VI_INTF_USB

Description

Interface type of the given session.

9.3.4.6 VI_ATTR_IO_PORT
Information

R/W Local ViUInt16

VI_PROT_NORMAL, VI_PROT_FDC, VI_PROT_HS488,

VI_PROT_4882_STRS, VI_PROT_USBTMC_VENDOR

Description

Specifies which protocol to use. In GPIB, you can choose between normal and high

speed (HS488) data transfers. In TCPIP systems, you can choose between normal and

488-style transfers, in which case the viAssertTrigger() and viReadSTB() operations

send 488.2-defined strings.

9.3.4.7 VI_ATTR_RD_BUF_OPER_MODE
Information

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 105

R/W Local ViUInt16 VI_FLUSH_ON_ACCESS, VI_FLUSH_DISABLE

Description

Determines the operational mode of the read buffer. When the operational mode is set

to VI_FLUSH_DISABLE (default), the buffer is flushed only on explicit calls to viFlush().

If the operational mode is set to VI_FLUSH_ON_ACCESS, the buffer is flushed every time a

viScanf() operation completes.

9.3.4.8 VI_ATTR_RD_BUF_SIZE
Information

RO Local ViUInt32 N/A

Description

This attribute specifies the size of the formatted I/O read buffer. The user can modify this

value by calling viSetBuf().

9.3.4.9 VI_ATTR_SEND_END_EN
Information

R/W Local ViBoolean VI_TRUE, VI_FALSE

Description

Whether to suppress the END indicator termination. If this attribute is set to VI_TRUE, the

END indicator does not terminate read operations. If this attribute is set to VI_FALSE, the

END indicator terminates read operations.

9.3.4.10 VI_ATTR_TCPIP_ADDR
Information

RO Global ViString N/A

Description

This is the TCPIP address of the device to which the session is connected. This string

is formatted in dot-notation.

9.3.4.11 VI_ATTR_TCPIP_HOSTNAME
Information

RO Global ViString N/A

Description

This specifies the host name of the device. If no host name is available, this attribute

returns an empty string.

9.3.4.12 VI_ATTR_TCPIP_KEEPALIVE
Information

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 106

R/W Local ViBoolean VI_TRUE, VI_FALSE

Description

An application can request that a TCP/IP provider enable the use of “keep-alive” packets

on TCP connections by turning on this attribute. If a connection is dropped as a result of

“keep-alives,” the error code VI_ERROR_CONN_LOST is returned to current and subsequent

I/O calls on the session.

9.3.4.13 VI_ATTR_TCPIP_NODELAY
Information

R/W Local ViBoolean VI_TRUE, VI_FALSE

Description

The Nagle algorithm is disabled when this attribute is enabled (and vice versa). The

Nagle algorithm improves network performance by buffering “send” data until a full-size

packet can be sent. This attribute is enabled by default in VISA to verify that synchronous

writes get flushed immediately.

9.3.4.14 VI_ATTR_TCPIP_PROT
Information

RO Global ViUInt16 0 to FFFFh

Description

This specifies the port number for a given TCPIP address. For a TCPIP SOCKET

resource, this is a required part of the address string.

9.3.4.15 VI_ATTR_TERMCHAR
Information

R/W Local ViUInt8 0 to FFh

Description

Termination character. When the termination character is read and VI_ATTR_TERMCHAR_EN

is enabled during a read operation, the read operation terminates.

9.3.4.16 VI_ATTR_TERMCHAR_EN
Information

R/W Local ViBoolean VI_TRUE, VI_FALSE

Description

Flag that determines whether the read operation should terminate when a termination

character is received.

9.3.4.17 VI_ATTR_TMO_VALUE
Information

R&S VISA VISA C Library

User Manual 1700.0232.01 - 04 107

R/W Local ViUInt32

VI_TMO_IMMEDIATE,1 to FFFFFFFEh,
VI_TMO_INFINITE

Description

Minimum timeout value to use, in milliseconds. A timeout value of VI_TMO_IMMEDIATE

means that operations should never wait for the device to respond. A timeout value of

VI_TMO_INFINITE disables the timeout mechanism.

9.3.4.18 VI_ATTR_WR_BUF_OPER_MODE
Information

R/W Local ViUInt16 VI_FLUSH_ON_ACCESS, VI_FLUSH_WHEN_FULL

Description

Determines the operational mode of the write buffer. When the operational mode is set

to VI_FLUSH_WHEN_FULL (default), the buffer is flushed when an END indicator is written to

the buffer, or when the buffer fills up.

If the operational mode is set to VI_FLUSH_ON_ACCESS, the write buffer is flushed under the

same conditions, and also every time a viPrintf() operation completes.

9.3.4.19 VI_ATTR_WR_BUF_SIZE
Information

RO Local ViUInt32 N/A

Description

This attribute specifies the size of the formatted I/O write buffer. The user can modify

this value by calling viSetBuf().

9.4 Events

In the following sections VISA events are presented.

9.4.1 VI_EVENT_SERVICE_REQ

Notification that a service request was received from the device.

Available attributes

─ VI_ATTR_EVENT_TYPE: Unique logical identifier of the event. (ViEventType)

R&S VISA Index

User Manual 1700.0232.01 - 04 108

10 Index

BNF 34, 40

Bonjour 24, 85

Conflict Manager 19

Conventions 6

Filter

Record 15

View 15

GPIB properties 19

Include path 7

Linker Path 7

makefiles 7

mDNS 11, 24, 85

Performance Tests 11

Quick-Start Example 7

RSVISA_EXTENSION Macro 8, 85

RsVisaConfigure 17

RsVisaLoader.dll 20

RsVisaTester 10

RsVisaTraceTool 13

Stress 4882 Test 11

Stress Mmem Test 11

viAssertTrigger 40, 93, 104

viBufRead 42

viBufWrite 43

viClear 44

viClose 45

viDiscardEvents 46

viEnableEvent 47

viFindNext 8, 48

viFindRsrc 8, 26, 48

viFlush 49, 94, 102, 105

viGetAttribute 51

viGpibCommand 52

viGpibControlATN 53

viGpibControlREN 54

viGpibPassControl 55

viGpibSendIFC 56

viInstallHandler 56

viLock 57

viOpen 59

viOpenDefaultRM 61

viParseRsrc 61

viParseRsrcEx 62

viPrintf 28, 63, 98, 103, 107

viQueryf 64

viRead 65

viReadSTB 67, 93, 104

viReadToFile 68, 92, 99, 104

VISA Address Strings 25

viScanf 35, 69, 94, 102, 105

viSetAttribute 70

viSetBuf 71, 95, 98, 102, 103, 105, 107

viSPrintf 72

viSScanf 73

viStatusDesc 73

Visual Studio Solution 7

viUninstallHandler 74

viUnlock 75

viVPrintf 75

viVQueryf 76

viVScanf 77

viVSPrintf 78

viVSScanf 79

viWaitOnEvent 80

viWrite 81

viWriteFromFile 82

Xcode 7

	1 Introduction
	2 Conventions Used in the Documentation
	3 Quick-Start Example
	3.1 Creating a Visual Studio Solution
	3.2 Creating an Xcode project for Mac
	3.3 Compiling the example on Linux
	3.4 Structure of the example
	3.5 Using PyVISA with Linux

	4 RsVisaTester
	4.1 Main Window
	4.2 Tests
	4.3 Find Resource Dialog
	4.4 Choose VISA Implementation Dialog

	5 RsVisaTraceTool
	5.1 Main Window
	5.2 Record Filter
	5.3 Edit View Filter Dialog

	6 RsVisaConfigure
	6.1 Main Window
	6.2 Find Resources Dialog
	6.3 Resource String Composer
	6.4 Property Dialog

	7 Developing with the R&S VISA
	7.1 Switching between VISA implementations
	7.1.1 Windows
	7.1.2 OS X

	7.2 CMake support

	8 VISA.NET
	8.1 Using of the IVI VISA.NET Global Resource Manager
	8.2 Direct use of the R&S VISA.NET Resource Manager

	9 VISA C Library
	9.1 String Formats
	9.1.1 VISA Address Strings
	9.1.2 viFindRsrc Expressions
	9.1.3 Format String for viPrintf functions
	9.1.3.1 Special Formatting Characters
	9.1.3.2 Format Specifiers
	9.1.3.3 Standard ANSI C Format Codes
	9.1.3.4 Enhanced Format Codes
	9.1.3.5 BNF Format for viPrintf()

	9.1.4 Format String for viScanf functions
	9.1.4.1 ANSI C Standard Modifiers
	9.1.4.2 Enhanced Modifiers to ANSI C Standards
	9.1.4.3 Standard ANSI C Format Codes
	9.1.4.4 Enhanced Format Codes
	9.1.4.5 BNF format for viScanf() readFmt string

	9.2 API functions
	9.2.1 viAssertTrigger
	9.2.2 viBufRead
	9.2.3 viBufWrite
	9.2.4 viClear
	9.2.5 viClose
	9.2.6 viDisableEvent
	9.2.7 viDiscardEvents
	9.2.8 viEnableEvent
	9.2.9 viFindNext
	9.2.10 viFindRsrc
	9.2.11 viFlush
	9.2.12 viGetAttribute
	9.2.13 viGpibCommand
	9.2.14 viGpibControlATN
	9.2.15 viGpibControlREN
	9.2.16 viGpibPassControl
	9.2.17 viGpibSendIFC
	9.2.18 viInstallHandler
	9.2.19 viLock
	9.2.20 viOpen
	9.2.21 viOpenDefaultRM
	9.2.22 viParseRsrc
	9.2.23 viParseRsrcEx
	9.2.24 viPrintf
	9.2.25 viQueryf
	9.2.26 viRead
	9.2.27 viReadSTB
	9.2.28 viReadToFile
	9.2.29 viScanf
	9.2.30 viSetAttribute
	9.2.31 viSetBuf
	9.2.32 viSPrintf
	9.2.33 viSScanf
	9.2.34 viStatusDesc
	9.2.35 viUninstallHandler
	9.2.36 viUnlock
	9.2.37 viVPrintf
	9.2.38 viVQueryf
	9.2.39 viVScanf
	9.2.40 viVSPrintf
	9.2.41 viVSScanf
	9.2.42 viWaitOnEvent
	9.2.43 viWrite
	9.2.44 viWriteFromFile

	9.3 Attributes
	9.3.1 Instrument class: All
	9.3.1.1 VI_ATTR_MAX_QUEUE_LENGTH
	9.3.1.2 VI_ATTR_RM_SESSION
	9.3.1.3 VI_ATTR_RSRC_CLASS
	9.3.1.4 VI_ATTR_RSRC_IMPL_VERSION
	9.3.1.5 VI_ATTR_RSRC_LOCK_STATE
	9.3.1.6 VI_ATTR_RSRC_MANF_ID
	9.3.1.7 VI_ATTR_RSRC_MANF_NAME
	9.3.1.8 VI_ATTR_RSRC_NAME
	9.3.1.9 VI_ATTR_RSRC_SPEC_VERSION
	9.3.1.10 VI_ATTR_USER_DATA
	9.3.1.11 VI_ATTR_USER_DATA_32
	9.3.1.12 VI_ATTR_USER_DATA_64
	9.3.1.13 VI_RS_ATTR_TCPIP_FIND_RSRC_MODE
	9.3.1.14 VI_RS_ATTR_TCPIP_FIND_RSRC_TMO
	9.3.1.15 VI_RS_ATTR_LXI_MANF
	9.3.1.16 VI_RS_ATTR_LXI_MODEL
	9.3.1.17 VI_RS_ATTR_LXI_SERIAL
	9.3.1.18 VI_RS_ATTR_LXI_VERSION
	9.3.1.19 VI_RS_ATTR_LXI_DESCRIPTION
	9.3.1.20 VI_RS_ATTR_LXI_HOSTNAME

	9.3.2 Instrument class: INSTR
	9.3.2.1 VI_ATTR_4882_COMPLIANT
	9.3.2.2 VI_ATTR_ASRL_AVAIL_NUM
	9.3.2.3 VI_ATTR_ASRL_BAUD
	9.3.2.4 VI_ATTR_ASRL_DATA_BITS
	9.3.2.5 VI_ATTR_ASRL_PARITY
	9.3.2.6 VI_ATTR_ASRL_STOP_BITS
	9.3.2.7 VI_ATTR_ASRL_FLOW_CNTRL
	9.3.2.8 VI_ATTR_ASRL_END_IN
	9.3.2.9 VI_ATTR_ASRL_END_OUT
	9.3.2.10 VI_ATTR_ASRL_CTS_STATE
	9.3.2.11 VI_ATTR_ASRL_DCD_STATE
	9.3.2.12 VI_ATTR_ASRL_DSR_STATE
	9.3.2.13 VI_ATTR_ASRL_DTR_STATE
	9.3.2.14 VI_ATTR_ASRL_RI_STATE
	9.3.2.15 VI_ATTR_ASRL_RTS_STATE
	9.3.2.16 VI_ATTR_ASRL_REPLACE_CHAR
	9.3.2.17 VI_ATTR_ ASRL_XON_CHAR
	9.3.2.18 VI_ATTR_ ASRL_XOFF_CHAR
	9.3.2.19 VI_ATTR_DMA_ALLOW_EN
	9.3.2.20 VI_ATTR_FILE_APPEND_EN
	9.3.2.21 VI_ATTR_GPIB_PRIMARY_ADDR
	9.3.2.22 VI_ATTR_GPIB_READDR_EN
	9.3.2.23 VI_ATTR_GPIB_REN_STATE
	9.3.2.24 VI_ATTR_GPIB_SECONDARY_ADDR
	9.3.2.25 VI_ATTR_GPIB_UNADDR_EN
	9.3.2.26 VI_ATTR_INTF_INST_NAME
	9.3.2.27 VI_ATTR_INTF_NUM
	9.3.2.28 VI_ATTR_INTF_TYPE
	9.3.2.29 VI_ATTR_IO_PROT
	9.3.2.30 VI_ATTR_MANF_ID
	9.3.2.31 VI_ATTR_MANF_NAME
	9.3.2.32 VI_ATTR_MODEL_CODE
	9.3.2.33 VI_ATTR_MODEL_NAME
	9.3.2.34 VI_ATTR_RD_BUF_OPER_MODE
	9.3.2.35 VI_ATTR_RD_BUF_SIZE
	9.3.2.36 VI_ATTR_SEND_END_EN
	9.3.2.37 VI_ATTR_SUPPRESS_END_EN
	9.3.2.38 VI_ATTR_TCPIP_ADDR
	9.3.2.39 VI_ATTR_TCPIP_DEVICE_NAME
	9.3.2.40 VI_ATTR_TCPIP_HISLIP_MAX_MESSAGE_KB
	9.3.2.41 VI_ATTR_TCPIP_HISLIP_OVERLAP_EN
	9.3.2.42 VI_ATTR_TCPIP_HISLIP_VERSION
	9.3.2.43 VI_ATTR_TCPIP_HOSTNAME
	9.3.2.44 VI_ATTR_TCPIP_IS_HISLIP
	9.3.2.45 VI_ATTR_TCPIP_PORT
	9.3.2.46 VI_ATTR_TERMCHAR
	9.3.2.47 VI_ATTR_TERMCHAR_EN
	9.3.2.48 VI_ATTR_TMO_VALUE
	9.3.2.49 VI_ATTR_TRIG_ID
	9.3.2.50 VI_ATTR_USB_INTFC_NUM
	9.3.2.51 VI_ATTR_USB_MAX_INTR_SIZE
	9.3.2.52 VI_ATTR_USB_PROTOCOL
	9.3.2.53 VI_ATTR_USB_SERIAL_NUM
	9.3.2.54 VI_ATTR_WR_BUF_OPER_MODE
	9.3.2.55 VI_ATTR_WR_BUF_SIZE

	9.3.3 Instrument class: INTFC
	9.3.3.1 VI_ATTR_DEV_STATUS_BYTE
	9.3.3.2 VI_ATTR_DMA_ALLOW_EN
	9.3.3.3 VI_ATTR_FILE_APPEND_EN
	9.3.3.4 VI_ATTR_GPIB_ADDR_STATE
	9.3.3.5 VI_ATTR_GPIB_ATN_STATE
	9.3.3.6 VI_ATTR_GPIB_CIC_STATE
	9.3.3.7 VI_ATTR_GPIB_HS488_CBL_LEN
	9.3.3.8 VI_ATTR_GPIB_NDAC_STATE
	9.3.3.9 VI_ATTR_GPIB_PRIMARY_ADDR
	9.3.3.10 VI_ATTR_GPIB_REN_STATE
	9.3.3.11 VI_ATTR_GPIB_SECONDARY_ADDR
	9.3.3.12 VI_ATTR_GPIB_SRQ_STATE
	9.3.3.13 VI_ATTR_GPIB_SYS_CNTRL_STATE
	9.3.3.14 VI_ATTR_INTF_INST_NAME
	9.3.3.15 VI_ATTR_INTF_NUM
	9.3.3.16 VI_ATTR_INTF_TYPE
	9.3.3.17 VI_ATTR_RD_BUF_OPER_MODE
	9.3.3.18 VI_ATTR_RD_BUF_SIZE
	9.3.3.19 VI_ATTR_SEND_END_EN
	9.3.3.20 VI_ATTR_TERMCHAR
	9.3.3.21 VI_ATTR_TERMCHAR_EN
	9.3.3.22 VI_ATTR_TMO_VALUE
	9.3.3.23 VI_ATTR_WR_BUF_OPER_MODE
	9.3.3.24 VI_ATTR_WR_BUF_SIZE

	9.3.4 Instrument class: SOCKET
	9.3.4.1 VI_ATTR_DMA_ALLOW_EN
	9.3.4.2 VI_ATTR_FILE_APPEND_EN
	9.3.4.3 VI_ATTR_INTF_INST_NAME
	9.3.4.4 VI_ATTR_INTF_NUM
	9.3.4.5 VI_ATTR_INTF_TYPE
	9.3.4.6 VI_ATTR_IO_PORT
	9.3.4.7 VI_ATTR_RD_BUF_OPER_MODE
	9.3.4.8 VI_ATTR_RD_BUF_SIZE
	9.3.4.9 VI_ATTR_SEND_END_EN
	9.3.4.10 VI_ATTR_TCPIP_ADDR
	9.3.4.11 VI_ATTR_TCPIP_HOSTNAME
	9.3.4.12 VI_ATTR_TCPIP_KEEPALIVE
	9.3.4.13 VI_ATTR_TCPIP_NODELAY
	9.3.4.14 VI_ATTR_TCPIP_PROT
	9.3.4.15 VI_ATTR_TERMCHAR
	9.3.4.16 VI_ATTR_TERMCHAR_EN
	9.3.4.17 VI_ATTR_TMO_VALUE
	9.3.4.18 VI_ATTR_WR_BUF_OPER_MODE
	9.3.4.19 VI_ATTR_WR_BUF_SIZE

	9.4 Events
	9.4.1 VI_EVENT_SERVICE_REQ

	10 Index

