Application Note

MEASUREMENTS IN REVERBERATION CHAMBER USING R&S® ELEKTRA

Products:

► R&S[®]ELEKTRA

Narayanan Raman | 1AEP4 | Version 1.1 | 03.2025 https://www.rohde-schwarz.com/product/elektra

Contents

1	Overview	.3
2	Scope	3
3	R&S® ELEKTRA Licenses	3
4	Radiated Immunity Testing in Mode-Tuned	.4
4.1.1	Calibration Setup	4
4.2	Chamber Validation Procedures	5
4.3	EUT Test Procedures	6
4.4	EMS Hardware Setup Configuration	6
4.5	EMS Test Template Configuration & Test Execution	9
4.5.1	Unloaded Chamber Test Template Configuration	9
4.5.2	Unloaded Chamber Test Execution	13
4.5.3	Loaded Chamber Test Template Configuration	17
4.5.4	Loaded Chamber Test Execution	18
4.5.5	EUT Check Test Template Configuration	22
4.5.6	EUT Check Test Execution	23
4.5.7	EUT Test Template Configuration	26
4.5.8	EUT Test Execution	29
5	Reference Documents	31

1 Overview

Reverberation Chambers (RVC) have become popular as an alternative to Anechoic Chamber (AC) facilities for electromagnetic emission & immunity tests. Unlike AC, RVC reflects waves creating multipath environment. EMC testing using reverberation chamber is accepted in various EMC test standards across different industries. The RVC is cost effective allowing high field strength generation without excessive amplification needs, eliminates the need for complex positioning of antennas and DUTs increasing test speed and simulates real-world electromagnetic environments more accurately. To ensure accurate and efficient testing, specialized EMC test software is required for data acquisition, automation, and analysis.

This application note describes how to setup Elektra and perform measurements in RVC.

2 Scope

This application note is based on Elektra v5.10. In Elektra v5.10, the following standards for performing radiated immunity measurements are supported.

- EN 61000-4-21 (Mode Tuned only)
- ISO 11452-11 (Mode Tuned only)

This version of application note explains how to configure the hardware setup and test templates to perform the RVC calibration, Equipment Under Test (EUT) checks & EUT test in mode tuned operation.

3 R&S® ELEKTRA Licenses

The following R&S ELEKTRA licenses and options are required to perform radiated immunity measurements.

- EMS Test Software (Radiated) ELEMS-R
- EMS Extension to System ELEMS-S
- EMS Rotating-Tuner Reverberation Measurements ELEMS-RVC
- EMS Extension to Automotive/MIL ELEMS-AMEX (optional, required for ISO 11542-11 support)

4 Radiated Immunity Testing in Mode-Tuned

The mode-tuned operation is described in the IEC 61000-4-21 [1] & ISO 11542-11 [2]. It consists of the following steps

- Chamber Calibration Procedures
- EUT Test Procedures

Before describing the chamber validation & EUT test procedures, let us look at the calibration setup.

4.1.1 Calibration Setup

The calibration setup is described in the appropriate section of the EMC standard.

The test volume (see **Error! Reference source not found.**), which from [1]) of the RVC is defined by the eight points at which the field probe will be placed during calibration. The test volume maintains a distance of at least $\lambda/4$ distance away from the chamber walls and any other metallic object (antenna or stirrers) within the chamber.

Here the field probe is positioned at the first corner of the test volume and every single axis of the triaxial field probe shall point inside the test volume. The receiving antenna is positioned inside the test volume. It shall point to a random location directed outside of the test volume and cross polarized with that of the transmitting antenna.

During calibration, the lower frequency range utilizes the log-per antennas, and the upper frequency ranges utilizes the horn antennas.

Figure 1 Test volume in RVC, SOURCE: IEC 61000-4-21 [1]

4.2 Chamber Validation Procedures

The Chamber Calibration procedures consist of three steps

- Unloaded Chamber Tests where the chamber field uniformity and input power requirements are determined with no EUT in the chamber. The test volume of the chamber is completely empty except for the necessary tri-axial field probes, transmit antenna, receiving (Reference) antenna and their respective cabling. All extraneous equipment (video monitoring system, foam test table) shall be removed. This calibration needs to be performed only once when chamber is installed or after major modifications of chamber.
- Loaded Chamber Tests where the chamber field uniformity and input power requirements are checked by simulated maximum loading. In addition to the necessary tri-axial field probes, transmit antenna and receiving (Reference) antenna, the chamber is filled with absorbing material to be fully loaded. Extraneous equipment that will be used for EUT testing can be added back to the chamber (e.g. video monitoring equipment, foam test table). This calibration needs to be performed only once when chamber is installed or after major modifications of chamber.
- EUT Check where chamber is calibrated with EUT in place and the Chamber Validation Factor (CVF, which is the average to input power ratio like AVF for unloaded chamber) is computed. From the CVF and AVF, the Chamber Loading factor (CLF) is derived. This calibration is performed before every EUT test.

The goal of unloaded and loaded chamber measurements is to check whether the reverberation chamber fulfills the requirements for a statically uniform field distribution as well as to find out the limits of the chamber (maximal loading). This data is required for the EUT Check and Measurement.

During the Unloaded & Loaded Chamber Tests, the max E-Field values (E_x, E_y, E_z) using the E-field probe, maximum & average received power using the reference antenna and input power (forward power averaged over a tuner rotation) are measured for each frequency, stirrer position and field probe/antenna location. From the E-Field measurements, the standard deviation for each probe axis & total data set (all probe axis) is determined. The standard deviations should not exceed the limits defined in the standard for the individual & total probe axis.

The average received power is used to compute the

- Receive antenna validation factor (AVF)
- Chamber Quality factor
- Time constant of the chamber (derived from Quality factor & needed to confirm the chamber is suitable for desired pulse waveform testing
- Power needed to generate the test levels.

The maximum of the received power is used to compute

- Estimated E Field
- Insertion loss (IL) in loaded chamber test
- Maximum load factor (which is the ratio of AVF_{Empty} to AVF_{Loaded})

During the chamber validation with EUT in place, only the received power is measured. E-Field measurements with probe are not required. The loading factor presented by EUT should be lesser than the maximum loading factor derived during loaded chamber test. The Chamber Validation Factor (CVF), (which is the average to input power ratio like AVF for unloaded chamber) is computed. From the CVF and AVF_{Empty}, the Chamber Loading factor (CLF) is derived. The CLF should be less than the maximum loading factor for all frequencies. Additionally, a value for the minimum pulse width is calculated. The applied pulse width shall not be below this value to inject sufficient power into the RVC.

The user is advised to consult the appropriate sections in the [1] and [2] for in-depth understanding of the concepts.

4.3 EUT Test Procedures

The EUT test procedures consist of

 EUT Qualification & Susceptibility tests as per standards. The forward input power required to setup the E-Field at every test frequency is derived from the Avg. Normalized Maximum E-field of unloaded chamber calibration & CLF derived with EUT in place.

4.4 EMS Hardware Setup Configuration

The hardware Setup describes the devices to be used in a measurement and how they work together. The hardware Setup is created manually. The Figure 2 below shows a setup as described in the standard.

Figure 2 General Test Setup for Measurements in RVC, SOURCE: IEC 61000-4-21 [1]

In Elektra, radiated hardware setup of diagram type Reverberation Chamber is used to realize the recommended hardware setup in standard. Figure 3 & Figure 4 shows the Calibration & EUT view of a hardware setup with four subranges.

• Calibration View (200 MHz - 7.125 GHz) shown below in Figure 3

Reverberation Chamber	
Test Site Public •	
Frequency Range : 200 MHz - 7.125 GHz	2
Frequency Range	Comment
200 MHz - 1 GHz	
RF Generator REA159 BC160 PL	Anglifer Band RC NO NO NO NO NO NO NO NO NO NO
Select Device	200 MHz - 1 GHz 200 MHz - 1 GHz (intersection of all devices) CP = Connection Point to Shielded Room Galibration View EUT Test View
I GHz - 3.2 GHz	
6 GHz - 7.125 GHz	

Figure 3 Calibration View (200 MHz – 7.125 GHz) of Hardware Setup

	Reverberation Chamber						
Test Site Frequency	Public - Range : 200 MHz - 7.125 GH	łz					
	Frequency Range	Comment					
• E	200 MHz - 1 GHz						
RF Generat	or BRA150-BC150 IN	Anglifer Band BC	REV BBA1500 OUT2 CP CP BBA150160 REV Fower Me	TX Antenna THE N	EUT	Field Probe RX Antenna	RX Sensor Anten
Select De	vice	200 MHz - 1 GHz 200 MHz - 1 GHz (Intersection	on of all devices) CP =	Connection Point to Shielde	d Room	Use this view only Calibration View 💿 El	UT Test View
۲	1 GHz - 3.2 GHz						
•	3.2 GHz - 6 GHz						
•	6 GHz - 7.125 GHz						

• EUT Test View (200 MHz - 7.125 GHz) shown below in Figure 4

Figure 4 EUT View (200 MHz – 7.125 GHz) of Hardware Setup

Each subrange in the hardware set up is configured with devices matching the frequency range of the subrange/

The Table 1 shows the devices must be selected from the device list and assigned to the respective placeholders

Device Name	Device Category/Type	Special Settings
RF Generator	Generator	No special requirements.
Amplifier Band A	Amplifier	Depending on whether a directional coupler is used, the value of the directional coupler attenuation must be appropriately measured and set. If necessary, multiple amplifiers may be used to cover the measured frequency range.
Power Meter FWD	Power Meter	If a two-channel power meter is used channel A shall be set for the measurement of the forward power.
Power Meter REV	Power Meter	If a two-channel power meter is used, channel B shall be set for the measurement of the reverse power. If the power meter supports dual channel measurement (coupling of channel B to A), the feature should be activated to improve the measurement speed.
Tx Antenna Rx Antenna	Antenna	Enter the frequency parameters for each antenna and the respective antenna efficiency factor. Antenna efficiency is the ratio of the total power radiated by an antenna to the net power accepted by the antenna from the connected transmitter.
Tuner	Turntable/Comtest tuner or Generic Turntable	Comtest is a manufacturer type of tuners for RVC. Tuners are classified as a type of Turntable
Field Probe		The field probe must support the simultaneous measurement of all three axes. Enter the values of the probe calibration (frequency response and linearity correction) if available
Power Meter Sensor	Power Meter/Spectrum Analyzer	No special requirements
Switch unit		The signal paths of the switching unit with their respective settings are defined here
Interlock		An interlock device must always be available in the device list. If no physical device is available, select the interface NONE.
Positioner	Positioner/Manual Positioner	Manual positioner to prompt user to change the Rx antenna /Field Probe position (only in Calibration View)

Depending on the power required, multiple amplifiers are used to cover the frequency range. Typically, a set of transmitting and receiving antennas is required. For the frequency range up to 1 GHz, logarithmic periodical antennas are utilized. For frequencies above 1 GHz, horn antennas are used to cover the required frequency range. The transmitting antennas shall point to a corner of the chamber and their position shall not be changed after the calibration has been completed.

For measuring the transmitted antenna forward and reverse power, either NRX or single probes are used.

The generated field strength is measured by the field probe and a receiving antenna that is connected to the spectrum analyzer/field probe for the measurement of the received power.

4.5 EMS Test Template Configuration & Test Execution

The following sections describe the test template configuration for the different calibration & EUT tests. The hardware setup must be created before configuring test templates.

4.5.1 Unloaded Chamber Test Template Configuration

The Table 2 shows the typical parameters configured for Unloaded chamber test template for ISO 11452-11 test standard. This configuration is applicable for EN 61000-4-21 standards as well.

Parameter	Setting	Location in User Interface (UI)	
EMS Application	Reverberation Methods	General Setup => Setup	
Test Method	Unloaded Chamber	General Setup => Setup	
Test Standard	ISO 11452-11	General Setup => Setup	
Level On	Level On Transducer Power		
Power Control	ower Control Forward Power		
Level Conservation for Modulation	CW Carrier = Modulation Carrier	Measurement Settings => Leveling Options	
Power Limitation	Not Active	Measurement Settings => Power Level Limitation	
Frequency Range	200 MHz – 7.125 GHz	Subrange Header	
Frequency Steps 5.6%, LOG (200 MHz – 600 GHz) 5.6%, LOG (600 MHz – 1 GHz) 5.6%, LOG (1 GHz – 1.2 GHz) 5.2% LOG (1.2 GHz – 2 GHz) 1.45% DECLIN (2 GHz – 7.125 GHz)		Subrange Header	
Test Level	est Level 5 W		
Modulation	Off	UI not activated	
Leveling Tolerance	0 dB – 0.4 dB	Subrange => Test Level	
Tuner	12	Subrange => Reverb Settings	
Sensor	8	Subrange => Reverb Settings	
Accessory Settings	Priority 1 => Frequency Priority 2 => Tuner Priority 3 => Position (Sensor)	Accessory Settings	
Input Evaluation Data Tolerance of Standard Deviation: ISO 11452-11 Max Std Deviation Chamber Volume: 179.237 m ³ (depends on chamber) Relative Permittivity: 8.8595 pF/m (depends on chamber)		Data Evaluation => Input Data	
Output Evaluation Data Calibration Result Table: ISO 11452-11 Unloaded Chamber Norm Max E-Field Table: LUF200 Averaged Max E-Field E&C		Data Evaluation => Output Data	
Evaluation Graphics	Insertion Loss Standard Deviation Antenna Correction Factor E-Field Comparison Chamber Q	Data Evaluation => Evaluation Graphics	
System Monitoring	Test Level Received Antenna Power Sensor Level Transducer Reverse Power	System Monitoring	

Table 2 Typical Parameters of Unloaded Chamber Test Template

4.5.1.1 Unloaded Chamber Test Template UI Previews

In this section, the UI to configure various parameters of unloaded chamber listed in Table 2 are shown.

Configuring the test method and test standard

•	General	Settings				
	Setup	Graphics Settings	Report			
	EMS /	Application		Test Method	Test Standard	
	Reve	rberation Methods		Unloaded Chamber	ISO 11452-11	•

Configuring the measurement settings

Flow Details - Overview Measurement					
Measurement Settings Accessory Settings					
Leveling Mode Leveling Options Power Level Limitation Sensor Level Limitation					
Level On Power Control					
Transducer Power Forward Power					
Flow Details - Overview Measurement					
Measurement Settings Accessory Settings					
Leveling Mode Leveling Options Power Level Limitation Sensor Level Limitation					
Level Conservation for Modulation Power Level Conversion Impedance 50	Power Level Conversion Impedance 50 Ω				
CW Carrier = Modulation Carrier Sensor Level Conversion Impedance 50	Sensor Level Conversion Impedance 50 Ω				
Modulation ON during Leveling					
Flow Details - Overview Measurement					
Measurement Settings Accessory Settings					
Leveling Mode Leveling Options Power Level Limitation Sensor Level Limitation					
Active					
● By Value 200 W ▼ ○ By Limit Line < <i>None></i>					

Configuring the accessory settings

Flow Details - Overview Measurement				
Measurement Settings		Accessory Settings		
A	Duiauitu	Loop Deventor	Deveryorter	
Active	Priority	Loop Parameter	Parameters	
		Frequency		
4	2	Tuner	Positioning Speed : 7	
1	3	Position	Positioning Speed : 8	

As shown above, the unloaded chamber test is performed for various combinations of tuner and sensor positions.

Configuring the subrange

Frequency Range List						
🖬 💽 🗹 Active Frequency Range Steps	Test Lev	el Dwell M	odulation Har	rdware Setup	Comment	
🔻 1 🛛 200 MHz - 600 MHz 5.6 %			FF RV	/C (Public)	-	亩
Frequency Test Level Level Profile Device Set	tings Reverb Settings					
a						
RF Generator		1	TX Antenna	Field Probe RX Ante	nna RX Sensor Anten	
□		СР		》 ~ 卅		
	FWD REV	J		\Rightarrow		
			Tune	er et al.	Ø	
Power Met	r FWD	Power Meter F	REV	Positioner	Power Meter Se	
Select Device	1 GHz - 3.2 GHz 690 MHz - 3.2 GHz (Intersection of	all devices) CP = C	onnection Point to Shielded Room	n (Calibration View	EUT Test View	
▶ 2 📝 600 MHz - 1 GHz 5.6 %	LOG 5 W	0 s OI	FF RV	/C (Public)		Ē
▶ 3 🗹 1 GHz - 1.2 GHz 5.6 %	LOG 5 W	0 s 01	FF RV	/C (Public)		Ē
▶ 4 🗹 1.2 GHz - 2 GHz 5.2 %	LOG 5 W	0 s 01	FF RV	/C (Public)		Ì
▶ 5	6 DECLIN 5 W	0 s Ol	FF RV	/C (Public)		Ì

Frequency Test Level Device Settings Reverb Settings					
 Constant Level 					
O Level Table defi	ned by Limit Line	<none></none>			
O Power Level det	ined by Reference	<none></none>			
Leveling Tolerance 0 dB - 0.4 dB Applied Tolerance: 0 dB to 0.4 dB					
Level Shift on Freq	uency Change	6 dB			
Frequency	Test Level	Device Settings	Reverb Settings		
No. of Tuner	Steps 12				
Sensor Po	sitions 8				

Configuring the system monitoring

System Monitoring

Add Time Column to Overview Result Table 🛛 🗹 Combine Channels in Monitoring Graphics

Configuring the data evaluation

Data Evaluati	ion					
Input Data	Output Data	Eval	uation Graphics			
Tolerance Of Standard Deviation			11452-11 Max	Std Deviatior	×	
	Chamber Volu	ıme	179.237	m3		
	Relative Permitt	ivity	8.8595	pF/m		

Chamber Volume & Relative Permittivity are used to calculate the Quality Factor (Q-Factor) of the chamber from the average power measurements. Relative Permittivity is used for estimating the Q-Factor from the averaged field strength readings

Data Evaluation
Input Data Output Data Evaluation Graphics
Calibration Result Table ISO 11452-11 Unloaded Chamber x
Norm Max E-Field Table LUF200 Averaged Max E-Field E&C ×
Data Evaluation
Input Data Output Data Evaluation Graphics
Insertion Loss Standard Deviation Antenna Correction Factor Antenna Correction Factor Comparison

4.5.2 Unloaded Chamber Test Execution

4.5.2.1 Test Creation

In the first step of the RVC calibration process, the field strength distribution in the test volume of the unloaded chamber is verified. Before the test is initiated, the field probe is positioned at sensor position 1 (the single axis shall point into the test volume). The receiving antenna is placed to a random position inside the test volume (Please note that the receiving antenna should have no direct illuminating path to the transmitting antenna and that it should also be cross polarized to the transmitting antenna).

On clicking "Create Test from Template" within the unloaded chamber test template, the unloaded chamber test is created as shown in Figure 5. In the measurement flow control, the test flow is grouped based on the antenna/tuner positions. In the example shown below in Figure 5, all subranges used the same Transmit antenna & same number of tuner/sensor positions. In case, the antenna or tuner positions are different in the few subranges, the measurement flow ill be grouped based on antenna/tuner steps to optimize the test flow.

4.5.2.2 Test Execution

The RVC calibration runs with several measurement loops. As shown in 4.5.1.1, the accessory setting is defined with three accessories namely frequency, tuner & Position (Sensor). Additionally, if the templates in HW Setup uses multiple antennas, the software groups & executes subranges based on antenna. The combination of the various accessories leads to many repetitions with unique accessory positions. Some accessory settings do not require any user interaction, but others like the sensor position, or the subrange antenna, must be set manually. Therefore, dialogs shown in Figure 6 will appear.

Figure 6 User Dialogs during Unloaded Calibration Test

There are two distinct phases during the measurement run

- Data Collection phase where the test levels are set at every frequency/tuner/sensor position & the system monitoring points are measured. After each complete scan the measurement results are copied to the "Loop Results" folder
- Data Evaluation phase where the evaluation is performed to generate an unloaded chamber evaluation result table (Figure 8) and a transducer correction Average Normalized E-Field Table (see Figure 9). In the Average Normalized E-Field Table, the Unloaded insertion column is populated during this test run. Additionally, the evaluation graphics selected in the template are also generated.

During the run of the measurement, the current state of the measurement loops, accessory movements, test levels are displayed in the respective panels as shown in Figure 7.

Figure 7 Unloaded Test view during measurement

Figure 8 shows the various columns of the unloaded test calibration results &

Table 3 describes the unloaded chamber result columns.

ISO 11452-) 11452-11 Unloaded Chamber Table																
6	Total Rows																
Name	Rg	🗍 Freq.		CCF	Insertion	Standard	Standar	Standard 🍦	Standard Deviation XYZ	Input Level 💧	Avg Re	P Max Rec 🛛 🖕	Avg Norm Ma 🝦	Estimated E 🖕	E-Field D	Chamber Q(E)	Chamber Q(P)
Unit		MHz		dB	dB	dB	dB	dB	dB	*	dBm	dBm	(V/m)/√(W)	(V/m)/√(W)	dB		
1		1 2	00.000	14.62	9.54	3.14	2.6	7 2.17	2.47	5.327	22.64	30.79	15.558	14.077	0.87	246.085159	515.351074
2		1 2	11.200	15.91	10.67	1.85	2.6	1 2.30	2.24	5.398	21.41	29.71	11.822	12.992	-0.82	169.970078	450.974487
3		1 2	23.027	15.30) 11.33	2.27	2.6	5 2.07	2.31	5.327	21.97	28.55	12.335	12.695	-0.25	193.774078	611.958130
4		1 2	35.517	16.11	11.81	1.25	1.8	2.03	1.72	5.345	21.17	27.46	12.121	12.831	-0.49	186.498566	597.659180
5		1 2	48.706	15.79	11.16	2.29	2.6	1 1.31	2.32	5.305	21.46	28.47	15.427	14.510	0.53	296.428497	757.921814
6		1 2	52.633	17.43	13.34	2.02	2.4	5 1.15	1.93	5.266	19.78	24.87	14.234	12.220	1.33	275.190063	611.156921
7		1 2	77.341	16.92	12.83	2.75	2.6	7 1.98	2.38	5.281	20.31	26.02	15.140	13.524	0.98	341.051697	809.423828
8		1 2	92.872	17.34	13.34	2.50	1.9	9 1.91	2.20	5.296	19.90	26.29	13.985	13.386	0.38	320.614838	866.265991
9		1 3	09.273	18.44	14.22	1.66	1.3	3 2.14	1.73	5.290	18.80	25.23	12.853	12.838	0.01	257.889038	791.664246
10		1 3	26.592	19.24	14.66	1.83	1.2	5 2.83	1.97	5.304	18.00	24.18	12.429	12.960	-0.36	270.859833	774.676208
11		1 3	44.881	20.21	15.62	1.95	1.5	3 1.49	1.78	5.318	17.05	24.24	12.586	12.105	0.34	343.578430	729.811584

Figure 8 Unloaded Chamber Calibration Result

Column Name	Description	Unit
Rg	Subrange Number	None
Frequency	Frequency	Hz
CCF	Chamber Correction Factor (B.8)	dB
Insertion Loss	Insertion loss (B.9)	dB
Standard Deviation X, Y, Z	Standard deviation of the E-field for the x axis in dB (B.4 & B.5)	dB
Standard Deviation XYZ	Standard deviation of the E-field for the x axis in dB (B.6 & B.7)	dB
P _{input}	Input power into the transmitting antenna	dBm
P _{AveRec}	Average power received by the receiving antenna measured with the receiver device	dBm
P _{MaxREC}	Maximum power received by the receiving antenna measured with the receiver device	dBm
Avg Norm Max E-field	Calculated average normalized maximum E-field (B.3) in V/m	V/m/SQR(W)
Estimated E-field	Estimated E-field using the maximum received power (A.6)	V/m/SQR(W)
E-field Delta	Difference between 'Avg Norm Max E-field' and 'Estimated E-field' column	dB
Chamber Q(E)	Estimated chamber Q factor using the chamber volume, the chamber wall permittivity and the averaged field strength values	None
Chamber Q(P)	Calculated chamber Q factor using the chamber volume, the chamber wall permittivity and the averaged power	None

Table 3 Unloaded Calibration Result Table Column Description

Figure 9 shows the various columns of the Average Normalized E-Field Table & Table 4 describes the Average Normalized E-Field Table columns based on [1]. The insertion loss (unloaded) column is populated during this test run.

UF200 Averaged Max E-Field ISO Table							
abc]	1 🖏 🗈 🛙	Public •	III 🖩 🐁 🔧				
Name	Frequency	Avg Norm Max E-Field 🍦	Insertion Loss Unloaded	Insertion Loss Loaded 💧			
Unit	MHz 🔹	(V/m)/√(W)	dB	dB			
nterpolation	Logarithmic 💌	Linear •	Linear 🔹	Linear 🔹			
1	200.000	15.558	9.54	0.00			
2	211.200	11.822	10.67	0.00			
3	223.027	12.335	11.33	0.00			
4	235.517	12.121	11.81	0.00			
5	248.706	15.427	11.16	0.00			
6	262.633	14.234	13.34	0.00			
7	277.341	15.140	12.83	0.00			
8	292.872	13.985	13.34	0.00			
9	309.273	12.853	14.22	0.00			
10	326.592	12.429	14.66	0.00			
11	344.881	12.586	15.62	0.00			
12	364.194	12.679	14.39	0.00			
13	384.589	11.108	15.84	0.00			
14	406.126	11.542	15.64	0.00			
15	428.869	13.529	17.31	0.00			
16	452.886	12.768	16.33	0.00			
17	478.247	11.190	19.57	0.00			
18	505.029	12.029	18.24	0.00			
19	533.311	13.503	17.88	0.00			
20	563.176	12.943	19.84	0.00			
21	594.714	11.528	19.61	0.00			
22	600.000	14.172	19.77	0.00			
23	600.000	14.168	19.77	0.00			
24	633.600	11.658	19.79	0.00			
25	669.082	12.078	21.01	0.00			
26	706.550	12.275	21.00	0.00			
27	746.117	12.096	20.31	0.00			
28	787.900	12.384	22.71	0.00			
29	832.022	12.148	24.35	0.00			
30	878.615	12.236	23.89	0.00			
31	927.818	12.688	24.61	0.00			

Figure 9 Average Normalized E-Field Table after Unloaded Calibration Test

Column Name	Description	Unit
Frequency	Frequency	Hz
Avg Norm Max E-field	Calculated average normalized maximum E-field (B.3) in V/m $$	V/m/SQR(W)
Insertion Loss (unloaded)	Insertion loss (B.9)	dB

Table 4 Average Normalized E-Field Table Colum Description

Figure 10 shows the various evaluation graphics generated during the data evaluation phase. These graphics are stored under the Evaluation Graphics folder in the test content explorer.

Figure 10 Unloaded Chamber Evaluation Graphics

4.5.3 Loaded Chamber Test Template Configuration

The typical parameters of the loaded chamber are mostly the same as unloaded chamber the except for the test method and evaluation settings. The following table gives the changes in parameters compared to the unloaded chamber

Parameter	Setting	Location in User Interface (UI)
Test Method	Loaded Chamber	General Setup => Setup
Input Evaluation Data	Tolerance of Standard Deviation: ISO 11452-11 Max Std Deviation Chamber Volume: 179.237m ³ (depends on chamber) Relative Permittivity: 8.8595 pF/m (depends on chamber) Norm Max E-Field Table: LUF200 Averaged Max E-Field Example (Public)	Data Evaluation => Input Data
Output Evaluation Data	Calibration Result Table: ISO 11452-11 Loaded Chamber	Data Evaluation => Output Data
Evaluation Graphics	Insertion Loss Standard Deviation Antenna Correction Factor Maximum Loading Factor Chamber Q	Data Evaluation => Evaluation Graphics

Table 5 Typical Parameters of Loaded Chamber Test Template

4.5.3.1 Loaded Chamber Test Template UI Previews

In this section, the UI for various parameters of loaded chamber listed in Table 5 are shown.

Configuring the test method and test standard

٠	General Settings					
	Setup Graphics Settings	Report				
	EMS Application		Test Method		Test Standard	
	Reverberation Methods	*	Loaded Chamber	-	ISO 11452-11	•

Configuring the measurement settings

The measurement settings are like the unloaded chamber test template

Configuring the accessory settings

The accessory settings are like the unloaded chamber test template

Configuring the subrange

The subrange settings are like the unloaded chamber test template

Configuring the system monitoring settings

The system monitoring settings are like the unloaded chamber test template

Configuring the data evaluation

Data Evaluation							
Input Data Output Data Eval	uation Graphics						
Tolerance Of Standard Deviation	ISO 11452-11 Max Std Devi						
Chamber Volume	179.237 m3						
Relative Permittivity	8.8595 pF/m						
Norm Max E-Field Table	LUF200 Averaged Max E-Fie 🗙						
Data Evaluation							
Input Data Output Data	Evaluation Graphics						
Calibration Result Table	ISO 11452-11 Loaded Chamber x						
Data Evaluation							
Input Data Output Data Evaluation Graphics							
Insertion Loss Standard Deviation Antenna Correction Factor							
🗹 Maximum Loading Factor 🛛 📝 Chamber Q							

4.5.4 Loaded Chamber Test Execution

The loaded chamber test creation & execution is the second step of reverberation chamber calibration process. It is very similar to unloaded chamber method but the field strength distribution in the test volume of the fully loaded chamber is verified. The receiving antenna is placed to a random position inside the test volume (please note that the receiving antenna should have no direct illuminating path to the transmitting antenna and that it should also be cross polarized to the transmitting antenna). However, before creating the loaded chamber test, a test application setting dialog (Figure 11) is shown to select unloaded chamber calibration result table.

Test Category	Reverberation Chamber			
EUT	EUT R&S Integration			
Test Name	ISO 11452-11 Loaded Chamber Calibration_Test			
EMS Test Template	ISO 11452-11 Loaded Chamber Calibration		Ø	
Test Method	Loaded Chamber 👻			
Leveling Mode	Transducer Power 🔻			
Test Level	5 W			
Dwell Time	0 s			
Report Template	<none></none>			
Unloaded Chamber Test	ISO 11452-11 Unloaded Chamber Calibration with Table $\qquad imes$		Ø	
	Cit Information + Add Information	↑	¥	
Title	Content			
Description		Ĩ	Ī	
Test Standard		Ĩ	Ĩ	
Test Site		Ī	ī	
Operator Name		Ĩ	Ĩ	
 Actions 				
	New Test Cancel			

Figure 11 Test Application Setting View to select the unloaded chamber calibration result table

The user may proceed with test creation by clicking "New Test" even without selecting an unloaded calibration chamber result table. This is particularly useful if chamber calibration results are available from EMC32 Software & Elektra allows importing of calibration results from EMC32 within test as explained later.

Figure 12 Selection of unloaded chamber calibration results inside the test

The unloaded calibration table can be selected within test within the test as shown in Figure 12. The menu allows import of calibration results generated using EMC32 Software thus saving time.

In case, the unloaded chamber test result table is not available, the test execution validation will not allow the user to proceed with data evaluation phase of the test.

The data collection & evaluation phase of loaded chamber calibration is very similar to unloaded chamber calibration.

Figure 13 shows the various columns of the loaded test calibration results & Table 6 describes the unloaded chamber result columns based on [1]

ISO 11452-1	SO 11452-11 Loaded Chamber Table															
D D																
Name	Rg	+ Free		CCF	÷.	Insertion Los	Max Loa 🝦	Standard Devi 🝦	Standard Devi 🝦	Standard Devi 🍦	Standard Deviation XYZ	Input Level 🖕	Avg Rec Pwr 🖕	P Max Rec 🛛 🖕	Chamber Q(E)	Chamber Q(P) 🍦
Unit		MH:		dB		dB		dB	dB	dB	dB	*	dBm	dBm		
1		1 2	00.000	1	7.55	12.43	1.963039	2.68	2.44	3.14	2.69	5.309	19.70	26.80	110.828728	262.527191
2		1 2	11.200	1	8.32	14.23	1.741975	1.62	2.31	3.08	2.31	5.402	19.00	25.38	102.393494	258.886932
3		1 2	23.027	1	8.78	14.18	2.229825	2.61	2.72	2.42	2.56	5.329	18.49	26.41	139.925491	274.442230
4		1 2	35.517	1	8.14	13.71	1.597509	2.35	1.28	2.48	2.01	5.336	19.13	25.78	118.549149	374.119415
5		1 2	48.706	1	8.94	14.19	2.067920	2.71	2.31	1.78	2.22	5.294	18.30	26.70	179.163467	366.514008
6		1 2	62.633	2	20.30	16.09	1.937147	1.64	1.76	1.92	2.13	5.253	16.90	25.57	201.731461	315.493408
7		1 2	77.341	1	9.45	15.14	1.788355	2.54	3.10	1.65	2.89	5.280	17.78	25.35	208.417847	452.607880
8		1 2	92.872	1	9.53	15.05	1.657937	1.93	3.43	2.45	2.63	5.300	17.71	25.19	201.404739	522.496399
9		1 3	09.273	2	21.29	17.44	1.929630	1.74	2.23	1.03	1.79	5.283	15.94	21.50	180.873672	410.267334
10		1 3	26.592	2	21.22	17.45	1.577569	2.14	2.37	2.35	2.14	5.301	16.02	23.14	203.566010	491.057068
11		1 3	44.881	2	1.88	17.37	1.469472	3.12	1.99	3.08	2.59	5.324	15.38	21.35	224.548187	496.648865

Figure 13 Loaded Chamber Calibration Result Table

Column Name	Description	Unit
Rg	Subrange Number	None
Frequency	Frequency	Hz
CCF	Chamber Correction Factor (B.8)	dB
Insertion Loss	Insertion loss (B.9)	dB
Max loading	Calculated maximum loading factor (B.10)	None
Standard Deviation X, Y, Z	Standard deviation of the E-field for the x axis in dB (B.4) (B.5)	dB
Standard Deviation XYZ	Standard deviation of the E-field for the x axis in dB (B.6) (B.7)	dB
P _{input}	Input power into the transmitting antenna	dBm
P _{AveRec}	Average power received by the receiving antenna measured with the receiver device	dBm
P _{MaxREC}	Maximum power received by the receiving antenna measured with the receiver device	dBm
Chamber Q(E)	Estimated chamber Q factor using the chamber volume, the chamber wall permittivity and the averaged field strength values	None
Chamber Q(P)	Calculated chamber Q factor using the chamber volume, the chamber wall permittivity and the averaged power	None

Table 6 Loaded Calibration Result Table Column Description

Figure 14 shows the various columns of the Average Normalized E-Field Table & Table 7 describes the Average Normalized E-Field Table columns

LOP200 Aven	aged Max E-Field I	SO Table		
abc]	1 🕞 🗈 🖡	Public •	III 🖩 🐁 🔧	J F
Name	Frequency	Avg Norm Max E-Field 👙	Insertion Loss Unloaded	Insertion Loss Loaded
Unit	MHz 🔹	(V/m)/√(W)	dB	dB
nterpolation	Logarithmic *	Linear *	Linear 🔹	Linear 👻
1	200.000	35.742	49.50	12.43
2	422.400	35.585	49.48	14.23
3	446.054	35.849	49.57	14.18
4	471.033	36.020	49.46	13.71
5	497.411	36.367	49.44	14.19
6	525.266	36.141	49.47	16.09
7	554.681	35.552	49.57	15.14
8	585.743	35.244	49.55	15.05
9	618.545	36.189	49.57	17.44
10	653.184	35.901	49.49	17.45
11	689.762	35.981	49.48	17.37
12	728.389	35.406	49.57	17.70
13	769.178	36.144	49.48	17.18
14	812.252	36.302	49.39	17.46
15	857.738	35.996	49.47	20.48
16	905.772	35.767	49.46	20.10
17	956.495	35.674	49.53	19.84
18	1,000.000	35.704	49.45	19.38
19	1,000.000	35.758	49.59	19.05
20	1,056.000	35.150	49.49	21.14
21	1,115.136	35.235	49.52	20.26
22	1,177.584	36.038	49.49	20.54
23	1,200.000	35.140	49.47	20.53
24	1,200.000	35.800	49.50	21.45
25	1,262.400	35.995	49.54	21.19
26	1,328.045	35.723	49.46	21.84
27	1,397.103	36.035	49.46	24.02
28	1,469.752	36.222	49.49	23.72
29	1,546.180	35.417	49.51	23.64
30	1,626.581	35.574	49.52	25.73
31	1,711.163	36.189	49.54	24.75

Figure 14 Average Normalized E-Field Table after Loaded Calibration Test

Column Name	Description	Unit
Frequency	Frequency	Hz
Avg Norm Max E-field	Calculated average normalized maximum E-field (B.3) in V/m $$	V/m/SQR(W)
Insertion Loss (loaded)	Insertion loss (B.9)	dB

Table 7 Average Normalized E-Field Table Column Description after loaded chamber calibration

Figure 15 shows the various evaluation graphics generated during the data evaluation phase. These graphics are stored under the Evaluation Graphics folder in the test content explorer.

Figure 15 Loaded Chamber Evaluation Graphics

4.5.5 EUT Check Test Template Configuration

The typical parameters of the EUT check that are different from unloaded/loaded test template configuration are shown in Table 8

Parameter	Setting	Location in User Interface (UI)
Test Method	EUT Check	General Setup => Setup
Input Evaluation Data	Min Required Pulse Width: 2.4 µs Chamber Volume: 179.237m ³ (depends on chamber) Relative Permittivity: 8.8595 pF/m (depends on chamber)	Data Evaluation => Input Data
Output Evaluation Data	EUT Load Effect Table: EUT Load Effect Table Cahmber Loading Factor: Chamber Loading Factor	Data Evaluation => Output Data
Evaluation Graphics	Chamber Loading factor Chamber Calibration Factor Chamber Q Pulse Width	Data Evaluation => Evaluation Graphics

Table 8 Typical Parameters of EUT Check Test Template

4.5.5.1 EUT Check Test Template UI Previews

In this section, the UI for various parameters of EUT check listed in Table 8 are shown.

Configuring the test method and test standard

•	General Settings										
	Setup	Graphics Settings	Report								
	EMS Application			Test Method	Test	Standard					
	Reverberation Methods -			EUT Check	▼ ISC	• 11452-11 •					

Configuring the measurement settings

The measurement settings are like the unloaded/loaded chamber test template

Configuring the accessory settings

For accessory settings, only the frequency & tuner loop is enabled.

Configuring the subrange

The subrange settings are like the unloaded/loaded chamber test template

Configuring the system monitoring settings

The system monitoring settings are like the unloaded chamber test template

Configuring the data evaluation

Data Evaluati	ion								
Input Data	Output Data	Evaluation Gra	phics						
Min Re	q Pulse Width	2.4	μs						
Cha	amber Volume	179.237	m3						
Relativ	ve Permittivity	8.8595	pF/m						
Data Evalua	tion								
Input Data	Output Data	a Evaluation	Graphics						
EUT Lo	oad Effect Table	EUT Load E	ffect Table	х					
Chamber	Chamber Loading Factor Chamber Loading Factor x								
Data Evaluat	ion								
Input Data	Output Data	Evaluation Gra	phics						
Chamber	Loading Factor	🗸 Chambe	r Calibration Fact	. 🗹 Chamber C					
🗹 Pulse Wi	dth								

4.5.6 EUT Check Test Execution

The EUT Check test creation & execution is the third step of reverberation chamber calibration process. It is very similar to loaded chamber method but the field strength distribution in the test volume of the chamber with the presence of EUT is verified. The receiving antenna is placed at a random position inside the test volume. Please note that the transmitting antenna should have no direct path of illumination to the receiving antenna and that the transmitting and receiving antennas are cross polarized. However, before creating the EUT Check test, a test application setting dialog (Figure 16) is shown to select unloaded & loaded chamber calibration result table.

Т	est Category	Reverberation C	hamber			
	Test Name	ISO 11452-11	DUT Check_Test			
EMS Test Template ISO 11452-11 DUT Check						
	Test Method	EUT Check		•		
Le	veling Mode	Transducer Pow	ver	•		
	Test Level	5	w			
	Dwell Time	0	s			
Rep	ort Template	<none></none>				Ø
Unloaded C	hamber Test	ISO 11452-11 Unloaded Chamber Calibration with Table $\qquad imes$				ø
Loaded C	Chamber Test	ISO 11452-11 L		Ø		
			Edit Information	Add Information	Ŷ	\mathbf{V}
Title			Content			
Description					Ō	Ĩ
Test Standard					Ō	Ĩ
Test Site						ân -
						w
Operator Name					Ī	Ĩ
Operator Name Actions					Ī	
Operator Name Actions 					ō	1

Figure 16 Test Application Setting View to select the unloaded chamber calibration & loaded chamber result table

The user may proceed to test creation by clicking "New Test" even without selecting an unloaded/loaded calibration chamber result tables and select them within the test as shown in Figure 12. The menu allows import of calibration results generated using EMC32 Software thus saving time.

In case, the unloaded/loaded chamber test result table is not available, the test execution validation will not allow the user to proceed with data evaluation phase of the test.

The data collection & evaluation phase of loaded chamber calibration is very similar to unloaded/loaded chamber calibration but for differences in measurement loops.

Figure 17 shows the various columns of the loaded test calibration results & Table 9 describes the EUT check chamber result columns based on [1]

EUT Loa	d Effect Ta	ible Table											
	5 0		4₀ →⊒ Ξ	-									
Nam	Rg	A Freque	ncy 🛔 CCF	é cu	= ő	Max Loading	Chamber Q(P)	Pulse Width	Margin to Reg PW	Input Level	Avg Rec Pwr	6 1/CU	F ô
Unit		MHz	* d8					us	us		dîm		
1		1	200.000	18.87	0.376183	1.96303	193,866241	0.154	2.24	5 5.29	5 18.	37	2.658282
2		1	211.200	19.49	0.439036	1.74197	197.994141	0.14	2.25	5.39	5 17	83	2.277716
3		1	223.027	16.35	0.785186	2.22982	480.501221	0.343	2.05	5.33	3 20.	92	1.273583
4		1	235.517	19.42	0.466293	1.597505	278.684387	0.18	2.21	2 5.32	9 17.	84	2.144574
5		1	248.706	19.48	0.427031	2.067920	323.656128	0.20	2.19	3 5.29	9 17.	76	2.341750
6		1	262.633	17.14	1.069142	1.93714	653.413940	0.39	5 2.00	4 5.24	ə 20.	06	0.935329
7		1	277.341	21.09	0.383097	1.78835	310.087738	0.178	2.22	2 5.27	5 16.	14	2.610305
8		1	292.872	19.96	0.546892	1.657933	473.754303	0.25	2.14	5.29	7 17.	28	1.828513
9		1	309.273	19.75	0.739464	1.929630	585.407532	0.30	2.09	5.28	1 17.	48	1.352330
10		1	326.592	21.32	0.619386	1.57756	479.823212	0.234	2.16	5 5.29	7 15.	92	1.614503
11		1	344.881	20.09	1.029035	1.469472	751.002014	0.34	2.05	5.31	3 17.	17	0.971784
12		1	364.194	24.01	0.371958	1.582665	358.155304	0.15	2.24	3 5.34	13.	26	2.688478
13		1	384.589	19.25	1.183146	1.500305	5 1,262.142578	0.52	1.87	3 5.39	5 18.	07	0.845204
14		1	406.126	25.74	0.253044	1.49413	333.625214	0.13	2.26	5.36	4 11.	56	3.951879
15		1	428.869	24.10	0.631110	1.70465;	573.316956	0.21	2.18	5.38	9 13.	22	1.584509
16		1	452.886	24.37	0.387520	2.867953	633.633423	0.22	2.17	5.44	5 12.	99	2.580511
17		1	478.247	23.99	1.127396	0.932564	815.833984	0.27	2.12	5.38	9 13.	33	0.886999
18		1	505.029	21.56	1.192160	1.51388	1,678.145264	0.525	1.87	5.36	9 15.	74	0.838813
19		1	533.311	23.21	0.978184	1.06478	1,352.455078	0.404	1.99	5 5.33	4 14.	06	1.022303
20		1	563.176	23.08	1.295842	1.496522	1,641.477295	0.464	1.93	5 5.35	9 14.	21	0.771699
21		1	594.714	27.23	0.466940	1.400780	742.744202	0.195	2.20	5.31	3 10.	02	2.141604
22		1	600.000	25.51	0.905467	1.059608	1,133.659180	0.301	2.09	9 5.33	7 11.	76	1.104403
23		2	600.000	25.52	0.902288	1.060753	1,132.671143	0.300	2.10	5.34	5 11.	76	1.108294
24		2	633.600	30.06	0.304036	1.209775	468.755249	0.118	2.28	2 5.31	2 7.	20	3.289082
25		2	669.082	26.20	0.861995	1.245115	1,342.506348	0.315	2.08	5.33	11.	07	1.160099
26		2	706.550	28.37	0.487807	1.12980	958.760132	0.216	2.18	\$ 5.43	8.	98	2.049991
27		2	746.117	27.52	0.608506	2.35732	1,372.868652	0.29	2.10	5.43	5 9.	83	1.643370
28		2	787.900	29.23	0.724124	0.953663	1,090.523315	0.220	2.18	5.23	7.	96	1.380980
29		2	832.022	34.06	0.295846	1.176290	421.912384	0.081	2.31	5.26	3.	15	3.380138
30		2	878.615	33.06	0.355347	1.313082	626.032227	0.113	2.28	5.45	3 4.	31	2.814154
31		2	927.818	33.33	0.431776	0.87546	693.281311	0.119	2.28	5.37	э 3.	98	2.316018
32		2	979.775	29.73	0.760476	1.47562	1,869.817871	0.304	2.09	5 5.404	4 7.	60	1.314966

Figure 17 EUT Check Result Table

Column Name	Description	Unit
Rg	Subrange Number	None
Frequency	Frequency	Hz
CCF	Chamber Correction Factor (B.11)	dB
CLF	Chamber Loading Factor (B.12)	None
Max loading	Calculated maximum loading factor (B.10)	None
Chamber Q(P)	Calculated chamber Q factor (B.13)	None
Pulse Width	Calculated minimum pulse width (B.14)	μs
Margin to Req PW	difference between the calculated minimum pulse width and the limit defined in the input parameters	μs
Input Level	Input power into the transmitting antenna	dBm
P _{AveRec}	Average power received by the receiving antenna measured with the receiver device	dBm
1/CLF	Inverse CLF for comparison to the Max. Loading	None

Table 9 EUT Check Result Table Column Description

Figure 18 shows the various columns of the Chamber Loading Factor Table & Table 10 describes the corresponding columns

D LUF200	Factor X				
abc]	1 🗭 🗈 🛙	Public	• 💷	III 🕷 🐁	⇒[
Name	Frequency	CLF	CCF	Insertion Loss	
Unit	MHz *		dB	dB	
Interpolation	Logarithmic 🔹	Linear •	Linear 🔹	Linear 🔹	
1	200.000	0.4	18.87	14.62	
2	211.200	0.4	19.49	15.91	
3	223.027	0.8	16.35	15.30	
4	235.517	0.5	19.42	16.11	
5	248.706	0.4	19.48	15.79	
6	262.633	1.1	17.14	17.43	
7	277.341	0.4	21.09	16.92	
8	292.872	0.5	19.96	17.34	
9	309.273	0.7	19.75	18.44	
10	326.592	0.6	21.32	19.24	
11	344.881	1.0	20.09	20.21	
12	364.194	0.4	24.01	19.72	
13	384.589	1.2	19.25	19.98	
14	406.126	0.3	25.74	19.77	
15	428.869	0.6	24.10	22.10	
16	452.886	0.4	24.37	20.26	
17	478.247	1.1	23.99	24.51	
18	505.029	1.2	21.56	22.33	
19	533.311	1.0	23.21	23.12	
20	563.176	1.3	23.08	24.21	
21	594.714	0.5	27.23	23.93	
22	600.000	0.9	25.51	25.08	
23	600.000	0.9	25.52	25.07	
24	633.600	0.3	30.06	24.89	
25	669.082	0.9	26.20	25.55	
26	706.550	0.5	28.37	25.25	
27	746.117	0.6	27.52	25.36	
28	787.900	0.7	29.23	27.83	
29	832.022	0.3	34.06	28.78	
30	878.615	0.4	33.06	28.57	

Figure 18 Chamber Loading Factor Table

Column Name	Description	Unit
Frequency	Test Frequency	Hz
CLF	Chamber loading factor (B.12)	None
CCF	Chamber calibration factor (B.11)	dB
Insertion Loss	Insertion loss (B.9) of the unloaded chamber	dB

Table 10 Chamber Loading Factor Table Column Description after EUT Check

Figure 19 shows the various evaluation graphics generated during the data evaluation phase. These graphics are stored under the Evaluation Graphics folder in the test content explorer.

Figure 19 EUT Check Evaluation Graphics

4.5.7 EUT Test Template Configuration

Parameter	Setting	Location in User Interface (UI)
EMS Application	Reverberation Methods	General Setup => Setup
Test Method	EUT Qualification	General Setup => Setup
Test Standard	ISO 11452-11	General Setup => Setup
Level On	Power Relation	Measurement Settings => Leveling Mode
Power Control	Forward Power	Measurement Settings => Leveling Mode
Transducer Relation	pow(TESTNOMLEV(v/m) /RVCEFIELD, 2) / RVCCLF RVCEFILED is referenced from the Avg Norm Max E- field table generated by unloaded chamber test RVCCLF is referenced from CLF table generated by EUT Check	Measurement Settings => Calculate Transducer Power[W]
Avg Norm Max E-Field	LUF200 Averaged Max E-Field Example (updated from unloaded tests)	Measurement Settings => Avg Norm Max E-Field
Chamber Loading Factor	Chamber Loading Factor (updated from EUT Check test)	Measurement Settings => Chamber Loading Factor
Level Conservation for Modulation	CW Carrier = Modulation Carrier	Measurement Settings => Leveling Options
Power Limitation	Not Active	Measurement Settings => Power Level Limitation
Frequency Range	200 MHz – 7.125 GHz	Subrange Header
Frequency Steps	5.6%, LOG (200 MHz – 600 GHz) 5.6%, LOG (600 MHz – 1 GHz) 5.6%, LOG (1 GHz – 1.2 GHz) 5.2% LOG (1.2 GHz – 2 GHz) 1.45% DECLIN (2 GHz – 7.125 GHz)	Subrange Header
Test Level	100 V/m	Subrange => Test Level
Modulation	Off	UI not activated
Leveling Tolerance	0 dB – 0.4 dB	Subrange => Test Level

The typical parameters for performing EUT qualification test in RVC is shown in Table 11.

Rohde & Schwarz | Application Note MEASUREMENTS IN REVERBERATION CHAMBER USING R&S® ELEKTRA 26

Parameter	Setting	Location in User Interface (UI)
Tuner	12	Subrange => Reverb Settings
Accessory Settings	Priority 1 => Frequency Priority 2 => Tuner	Accessory Settings
System Monitoring	Test Level Received Antenna Power Sensor Level Transducer Forward Power VSWR Amplifier Forward Power	System Monitoring

Table 11 Typical Parameters of EUT Qualification Test Template

4.5.7.1 EUT Test Template UI Previews

In this section, the UI for various parameters of EUT listed in Table 11 are shown.

Configuring the test method and test standard

▼	General	jeneral Settings										
	Setup	Graphics Settings	Report									
	EMS Application			Test Method	Test Standard							
	Reve	rberation Methods	Ψ.	EUT Qualification	ISO 11452-11 🔹							
	EUT N	Ionitoring Template										
	<none></none>			Overwrite Results in Interactive Measurem	nent Separate measurement flow for each	antenna						

Configuring the measurement settings

Flow Details - Overview Measurement										
Measurement Settings Accessory Settings										
Leveling Mode Leveling Options	Power Level Limitation	Sensor Leve	el Limitation							
Level On	Power Control		Calculate Tra	ansducer Power [W] by						
Power Relation 👻	Forward Power	•	pow(TESTN	NOMLEV{V/m} / RVCEFIELD, 2) / I	RVCCLF ×	Avg Norm Max E-Field	LUF200 Averaged N	×		
			Check	Evaluate Keyword		Chamber Loading Factor	Chamber Loading F	×		

The formula to calculate the required forward power to generate the required electric field strength at each frequency is from [1]. However, the conversion factors are same as in [2].

Flow Details - Overview Measurement										
Measurement Settings Accessory Settings										
Leveling Mode	Leveling Options	Power Level	Limitation	Sensor Level Limitation						
Level Conservat	ion for Modulation		Powe	r Level Conversion Impedance	50	Ω				
CW Peak = Mo	dulation Peak	•	Senso	50	Ω					
Modulation	ON during Leveling)								

The level conservation needs to CW Carrier = Modulation Carrier for [1].

Configuring the accessory settings

For accessory settings, only the frequency & tuner loop is enabled.

▼ Flow Details - Overview Measurement										
Measurem	ent Settings	Accessory Settings								
Use Modulation sequence										
Active	Priority	Loop Parameter	Parameters							
		Frequency								
~	2	Tuner	Positioning Speed : 7							
•	3	User Defined								

Configuring the subrange

Configuring the system monitoring settings

	O-	-0	8 47 -00-	- 1 #	-1))	0			2	₩ 1 Ø.
No.	Active	Parameter	Unit	Y-Axis Range	LOG X-Axis	LOG Y-Axis	Display	Merge	Detector	Measurement Extension
1		Test Level	V/m	0 120					Carrier	
2	 Image: A start of the start of	Received Antenna Power	dBm	-20 30	~		~		Carrier	
3	 Image: A start of the start of	Sensor Level	V/m	0 120	~		~		Carrier	Measure all Field Sensor Axes
4	 Image: A start of the start of	Transducer Forward Power	w	0 20	 Image: A start of the start of		~		Peak	No Measurement
5		Transducer Reverse Power	w	0 100	1				Peak	
6		Transducer Net Power	w	0 100	1				Peak	
7	~	VSWR		0 10	~		~		None	
8	 Image: A start of the start of	Amplifier Forward Power	w	0 20	~		~		Peak	No Measurement
9		Amplifier Reverse Power	w	0 500	1				Peak	
10		Amplifier Saturation	dB	0 10	1				None	
11		Amplifier Input	dBm	-50 0	1				Carrier	
12		Generator Output	dBm	-50 0	~				Carrier	
13		User Evaluation 1	Ω	0 200	1		-		None	UserEvaluation1
14		User Evaluation 2	Ω	0 200	1		-		None	UserEvaluation2
15		User Evaluation 3	Ω	0 200	1		-		None	UserEvaluation3
10		Insertion Loss	dP	0 100					Nana	

Configuring the data evaluation

The data evaluation settings are like any EUT tests done using Anechoic Chamber

4.5.8 EUT Test Execution

The EUT test creation & execution is like any EUT qualification/Susceptibility tests performed in Anechoic Chamber. Figure 20 shows the various columns of the EUT Qualification test in RVC

Spectrum C	vervie	w Tab	le												
D D			II 1/6	-₩ 🗐 🔽	Auto Scroll										Spe
Name	Rg	- 🌲 F	requency 🛔	Test Level	Rec Pwr	Sensor Level XYZ	Sensor Level X 🖕	Sensor Level Y 🖕	Sensor Level Z 🍦	Trd Fwd Pwr	VSWR	Amp Fwd Pwr	Modulation	Tuner Position	¢ Com
Unit		N	∕Hz ▼	V/m •	dBm	V/m	V/m	V/m	V/m	w .		w *			
1		1	200.000	102.2	5 17.00	36.20	22.74	24.98	12.98	21.756	2.01	25.733	OFF		12
2		1	211.200	102.55	25.58	33.76	19.87	11.86	24.58	18.776	2.26	22.289	OFF		12
3		1	223.027	103.72	2 29.13	37.56	31.26	17.97	10.52	10.735	2.35	5 12.882	OFF		12
4		1	235.517	102.3	3 21.94	26.61	19.85	13.77	11.17	17.612	3.09	21.187	OFF		12
5		1	248.706	102.49	21.44	42.58	33.44	9.17	24.72	19.304	1.40	23.385	OFF		12
6		1	262.633	102.90	21.35	37.48	30.94	9.11	19.10	7.778	1.70	9.493	OFF		12
7		1	277.341	103.52	2 3.81	63.87	42.22	40.51	25.63	21.981	1.85	26.931	OFF		12
8		1	292.872	103.66	5 20.55	41.14	20.82	23.61	26.48	15.448	1.57	18.989	OFF		12
9		1	309.273	103.66	5 13.95	33.34	29.76	13.98	5.55	11.434	1.20	14.162	OFF		12
10		1	326.592	104.55	5 6.00	45.69	34.71	25.47	15.30	13.895	1.95	5 17.314	OFF		12
11		1	344.881	103.51	16.78	24.58	20.78	12.09	5.11	8.203	1.66	5 10.275	OFF		12
12		1	364.194	103.4	5 22.29	26.81	24.76	9.73	3.33	22.682	1.77	28.665	OFF		12
13		1	384.589	102.80) 11.34	25.59	16.19	13.05	14.91	7.045	2.03	8.910	OFF		12
14		1	406.126	103.88	3 13.98	72.46	30.69	50.08	42.43	33.660	1.60	42.654	OFF		12
15		1	428.869	103.16	5 17.14	21.06	13.39	3.07	15.96	13.262	1.22	2 17.051	OFF		12
16		1	452.886	102.4	1 21.58	49.58	27.92	27.03	30.79	21.001	1.26	27.261	OFF		12
17		1	478.247	102.74	10.93	29.71	14.89	23.32	10.84	7.178	1.34	9.352	OFF		12
18		1	505.029	103.9	5 12.99	18.55	10.88	12.83	7.81	6.878	1.51	9.032	OFF		12
19		1	533.311	103.58	3 10.45	43.95	29.43	20.75	25.20	8.474	1.38	3 11.177	OFF		12
20		1	563.176	103.32	2 13.16	11.84	0.62	2.02	11.65	6.549	1.07	8.748	OFF		12
21		1	594.714	101.5	5 16.66	48.18	26.97	13.54	37.56	17.516	5 1.01	23.529	OFF		12
22		1	600.000	102.94	12.12	24.02	18.00	5.40	14.96	9.202	1.05	i 12.372	OFF		12
23		2	600.000	103.3	7 12.18	24.11	18.01	5.54	15.04	9.279	1.05	5 12.475	OFF		12
24		2	633.600	102.77	7 16.52	46.27	38.55	23.66	9.78	26.715	i 1.34	36.182	OFF		12
25		2	669.082	102.42	2 13.11	31.25	15.50	4.13	26.82	9.423	1.51	12.855	OFF		12
26		2	706.550	102.67	7 13.11	47.54	14.66	7.32	44.63	16.925	1.01	23.310	OFF		12
27		2	746.117	102.52	2 10.80	21.28	9.97	10.80	15.40	13.528	8 1.04	18.789	OFF		12
28		2	787.900	102.22	2 16.54	37.08	33.04	11.83	11.95	11.002	1.14	15.497	OFF		12
29		2	832.022	104.1	5 10.93	47.58	4.04	34.53	32.49	28.030	1.20	39.786	OFF		12
30		2	878.615	102.34	5.59	57.16	24.26	31.17	41.32	22.874	1.18	32.803	OFF		12
31		2	927.818	102.65	5 8.76	45.35	11.22	22.12	37.97	19.122	1.24	27.627	OFF		12
32		2	979.775	103.72	9.63	31.02	29.00	10.64	2.83	11.106	1.37	16.288	OFF		12

Figure 20 Loop result table of EUT Qualification in RVC

Figure 21 shows the various system monitoring graphics of the EUT Qualification test in RVC

Figure 21 System Monitoring Graphics of EUT Qualification test in RVC

Evaluation of EUT failure mode either by operator intervention or using EUT monitoring template is like those performed with Anechoic Chamber and is not described in this application note.

5 Reference Documents

- [1] IEC 61000-4-21 Edition 2.0 2011-01 Electromagnetic compatibility (EMC) Part 4-21: Testing and measurement techniques Reverberation chamber test
- [2] ISO 11542-11 Edition 2010-09-01 Road vehicles Component test methods for electrical disturbances from narrowband radiated electromagnetic energy Part 11: Reverberation chamber

Rohde & Schwarz

The Rohde & Schwarz electronics group offers innovative solutions in the following business fields: test and measurement, broadcast and media, secure communications, cybersecurity, monitoring and network testing. Founded more than 80 years ago, the independent company which is headquartered in Munich, Germany, has an extensive sales and service network with locations in more than 70 countries.

www.rohde-schwarz.com

Rohde & Schwarz training

www.rohde-schwarz.com/training

Rohde & Schwarz customer support

www.rohde-schwarz.com/support

AD-T-M: 3572.7186.00/02.00/I

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG Trade names are trademarks of the owners. 1AEP4 | Version 1.1 | 03.2025 Application Note | MEASUREMENTS IN REVERBERATION CHAMBER USING R&S® ELEKTRA

Data without tolerance limits is not binding | Subject to change © 2025 Rohde & Schwarz GmbH & Co. KG | 81671 Munich, Germany www.rohde-schwarz.com