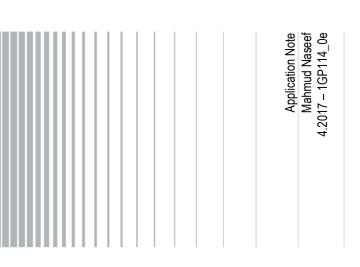
Receiver Diversity Channel Simulations for Broadcast Signaling Application Note

Products:

- R&S[®]BTC
- R&S[®]SGT100A

Receiver diversity improves reception quality by using multiple antennas with a preferably low correlation factor between each receive path. The result is a much more robust reception, since a deep fade will not affect all received signals at the same time.

However, the complex geometry and positioning constraints for antennas of the receiving devices can introduce an unwanted correlation between channels. The popular diversity test setup consisting of several independent transmitters does not serve the needs of a realistic simulation, because radio channel correlation is not simulated.


This application note explains a compact and versatile MIMO test solution for any common broadcast standard with real time fading including the simulation of channel correlation for a 1x4 MIMO system.

The test setup allows very precisely specified individual multipath profiles.

Note:

Please find the most up-to-date document on our homepage http://www.rohde-schwarz.com/appnote/1GP114.

Table of Contents

1	Readers Guide	3
2	Overview	4
2.1	Receive Diversity	4
2.2	Fading	5
3	Channel Simulation for 1x4 MIMO	7
3.1	Hardware Requirements	8
3.2	Software Requirements	9
3.3	Configuring BTC for 1x4 Radio Channel Simulation	9
3.4	Generation of Signals with Different Transmission Standards	14
4	Appendix	17
5	Literature	22
6	Ordering Information	23

1 Readers Guide

Chapter 2 gives a short introduction to the concept of MIMO receiver diversity, broadcast technology, fading and relevant parameters needed for understanding and generating the 1x4 MIMO channel simulation.

Chapter 3 explains the test equipment setup and software configuration steps using Rohde & Schwarz signal generators.

Chapter 4 is the Appendix section, where the correlation matrix and its influence on the receiver diversity is discussed.

The following abbreviations are used in this application note for Rohde & Schwarz test equipment:

- The R&S®BTC Broadcast Test Center is referred to as BTC
- The R&S®SGT100A SGMA Vector RF Source is referred to as SGT
- Device Under Test is referred to as DUT

2 Overview

In order to make radio communications more robust, several different diversity modes are used. They include time diversity (different timeslots and channel coding), frequency diversity (different channels, spread spectrum, and OFDM), and also spatial diversity. Spatial diversity requires the use of multiple antennas at the transmitter and/or the receiver end. Multiple antenna systems are typically known as Multiple Input, Multiple Output systems (MIMO). Multiple antenna technology can also be used to increase the data rate (spatial multiplexing) instead of improving robustness. In case of spatial multiplexing different parts of data are transported on differently spaced parts of the link, hence trading robustness for parallel transfer.

In practice, both methods are used separately or in combination, depending on the channel condition. The next section introduces a short description of the technology that is relevant for this application note. A more detailed discussion on MIMO technology can be found in 1MA142 [1].

2.1 Receive Diversity

Receive (RX) diversity is the key focus of this application note. RX diversity uses more antennas on the receiver side than on the transmitter side. The simplest scenario consists of two RX and one TX antenna (SIMO, 1x2).

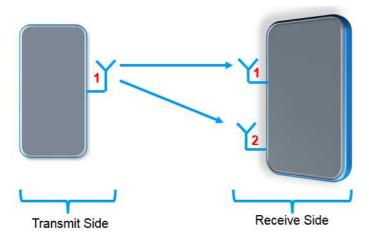
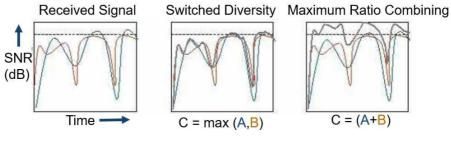
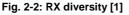




Fig. 2-1: SIMO antenna configuration [1]

Because special coding methods are not needed, this scenario is very easy to implement. Only two RF paths are needed for the receiver.

Because of the different transmission paths, the receiver sees two differently faded signals. By using the appropriate method in the receiver, the signal-to-noise ratio can now be increased. Switched diversity always uses the stronger signal, while maximum ratio combining uses the sum signal from the two signals (see Fig. 2-2).

2.2 Fading

A transmit signal from a transmit antenna arrives at the receive antenna not only by direct line of sight path but also via multiple propagation paths. The received field strength level may strongly vary due to atmospheric disturbances. This phenomenon is known as fading. The constant reflection of the electromagnetic waves, emitted by a transmitter, from walls of buildings, trees, mountain slopes and other reflecting natural or artificial obstacles is one of the major sources of the fading effect.

The reception of TV signals broadcast via satellite can be impaired by fading. A known phenomenon is flickering of the received picture, produced by planes flying past or a drop in receive field strength caused by an approaching thunderstorm. In many cases reception is stationary with a direct line of sight to the TV transmitter. However, terrestrial transmission not only provides for stationary operation but also for portable and mobile reception. This considerably accentuates the effects of fading.

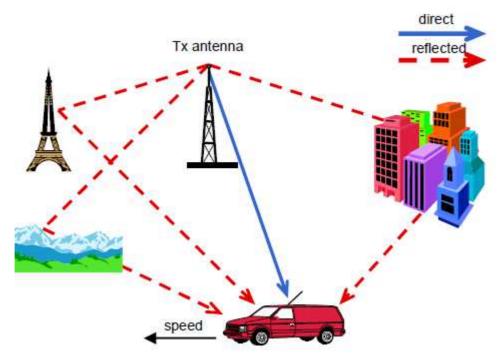


Fig. 2-3: Basic fading principle [2]

This means the transmitter signal travels along different reflection paths to the receiver (Fig. 2-3). The receiver detects all these signals, which typically have different time delays, levels, phases and even frequency shifts due to Doppler effects (caused by moving transmitters or receivers). In a MIMO system a complex fading channel exists between each transmit and receive antenna pair.

While the performance of a single input, single output (SISO) system with only one transmit and one receive antenna is degraded by the fading process, MIMO systems work best under multi-path conditions, i.e. in environments with strong differences to the number of radio paths received. Fading is an essential component in MIMO systems, since sufficiently different – i.e. in the best case, uncorrelated – fading channels are required to distinguish the data streams coming from the different transmit antennas.

The basic elements of fading are [3]:

- 1. Reflection: The first basic element of fading is reflection. Reflections or echoes occur at all obstacles in the propagation path of waves. Echoes are described by the reflected level and the phase shift caused by reflection. The level and phase shift depend on the reflecting material.
- 2. Doppler: The second basic element is the Doppler Effect, i.e. the frequency shift resulting from the movement of the receiver relative to the site of a transmitter.
- **3.** Rice: Rice fading is caused by Doppler-shifted echoes with a Gaussian distribution, but in addition there is always a direct path from the Tx antenna to the Rx antenna.
- **4.** Rayleigh: similar to Rice fading, is caused by Doppler-shifted echoes with a Gaussian distribution, but there exists no direct path from the Tx antenna to the Rx antenna.

A more detailed description on the types of fading can be found in [3].

Uncorrelated fading channels are, however, only a best-case scenario. Under real operating conditions, the different fading channels are not fully independent of each other, due to the geometric arrangement, especially proximity, of the antennas. For MIMO tests, it is therefore essential to simulate variable correlations between the different fading channels. Only by correlating the individual channels with each other a realistic simulation of the entire MIMO system can be achieved. This is important, since for MIMO systems the benefit depends on the degree of channel correlation, i.e. the higher the statistical independence of the different fading channels, the better the achievable data transfer rate [2].

3 Channel Simulation for 1x4 MIMO

In order to generate a 1x4 MIMO channel scenario simulation, the compact setup shown in Fig. 3-1 is a highly flexible test environment. The spatial diversity scenario is simulated using one baseband of the BTC acting as the transmitter sending out replicas of the signal simultaneously at the same frequency, to four receive antennas of the DUT receiver. The four paths, RF A, RF B, RF C and RF D can be configured to simulate four different radio channel simulations including all realistic propagation effects such as multipath propagation, signal delay, Doppler Effect due to motion etc. For this test setup, BTC and a pair of SGT is needed and signals up to 6 GHz can be generated.

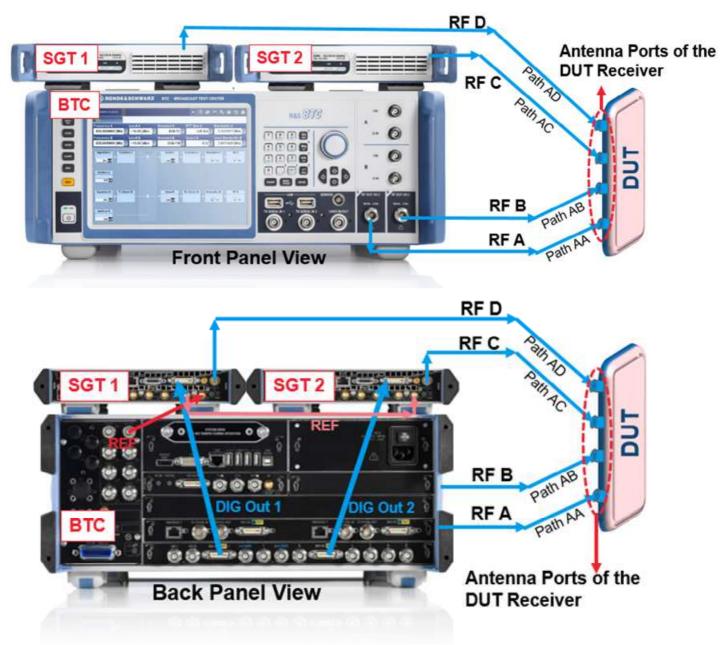


Fig. 3-1: Test setup for 1x4 MIMO receiver diversity channel simulation

The BTC and the two SGT instruments are cabled with each other in the following way (shown in Fig. 3-1):

- The Digital I/Q output 1 of the BTC is connected to the Digital I/Q input of SGT 1 and Digital I/Q output 2 of the BTC is connected to the Digital I/Q input of SGT 2
- The REF output of the BTC is connected to the 10 MHz Ref input of SGT1 and the Ref Out of SGT 1 is connected to the Ref In of SGT 2

Instrument control:

The BTC is controlling the SGT's over LAN. A LAN switch is used to connect BTC and the SGT to each other and the LAN Switch needs to be connected to a local network with DHCP server capabilities. BTC and SGT Network address mode need to be set to DHCP.

3.1 Hardware Requirements

The BTC and SGT base units need to be fitted with the following hardware in order to allow 1x4 MIMO channel simulation.

Required hardware options for BTC:

- Baseband generator, 1st & 2nd channel : R&S[®]BTC-B1, R&S[®]BTC-B2
- RF Path A and RF Path B: R&S®BTC-B3106, R&S®BTC-B3206
- Baseband Main Module, two I/Q paths to RF: R&S[®]BTC-B12
- Fading simulator (Path A & Path B): R&S[®]BTC-B1031, R&S[®]BTC-B1032
- Fading Simulator Extension (path A and path B): R&S®BTC-B1034

Required hardware options for SGT:

- RF frequency extension to 6GHz: R&S[®]SGT-KB106
- Cable for connecting R&S[®]Digital I/Q Interfaces: R&S[®]SMU-Z6

Further information is provided in Chapter 6 "Ordering Information".

3.2 Software Requirements

Depending on the specific testing requirement, the BTC and SGT units require valid software option licenses.

Required software options for BTC:

- Extended I/Q Interfaces: R&S®BTC-K2500
- MIMO Fading and Routing: R&S®BTC-K1034

At least one or multiple transmission standards, stream libraries and waveform libraries (based on testing requirements) need to be activated on the BTC using software options. The standards include DVB-T, DVB-T2, ATSC, ISDB-T, DTMB, T-DMB, etc. Further information is provided in Chapter 6 "Ordering Information".

Required software options for SGT:

• Digital Baseband Connectivity: R&S®SGT-K18

Further information is provided in Chapter 6 "Ordering Information".

3.3 Configuring BTC for 1x4 Radio Channel Simulation

This section explains how to configure the BTC and SGT.

Connect the BTC with the two SGT as shown in Fig. 3-1.

BTC-100002 V1.80.0.0		8 💽 🕯	2	8 🔧 ★	5
	MGen -(155r oz.)		7	Applications	BER
	D U T				
				Drag application it on the left par	a and drop se to activate.

Fig. 3-2: Application selection on BTC

- Preset the BTC
- Click on the TX settings box (as shown in Fig. 3-2)

NOTE: The back button (marked in Blue) on the top right corner is used to go back to home screen (as shown in Fig. 3-2)

BTC-100103 V2.0.0.2					-	•	? 🧕	₿ �	*	5
MMGen 1	MMGen	2 TX								
Frequency A 1 000.000 000	000 MHz -	Level A -10.00 dBm	-	Signal Type Of	A ff =					
Frequency B 1 000.000 000	000 MHz -	Level B -10.00 dBm	-	Signal Type Of	8 f =					
SignalGen A	Tx Distort. A On Interferer A None •	Fader A	-	Noise A Off -	Rx Distr	ort. A On	Mode	On		RF A
SignalGen B Off 💽	Tx Distort. B	Fader 8		Noise B Off -	Rx Dist	ort. B On	Modu	Da		RF B On
	Interferer B None	On						0		

Fig. 3-3: Main Menu of the TX application of the BTC

Go in to Fader A

Frequency A	Level A	1	Signal Type A					
1 000.000 000 000 MHz	-10.00 dBm		Signar type A Off ▼					
	Level B		Signal Type B					
Frequency B 1 000.000 000 000 MHz -	-10.00 dBm		off ▼					
	R		Stream C		Stream D			
Target Name	17		rssgt10	0a102291	rssgt100a10183			
Remote Connection		On 🗸			On			
Remote Connection State		Connected			Connecte			
Digital I/Q Connection Sta	te		С	onnected	Connect			
Digital I/Q Connected Inst	rument	SGT100A (102291) DIG IQ IN			SGT100A (101838) DIG IG			
RF Frequency		1 000.000 000 000 MHz			1 000.000 000 000 MI			
RF Level			-1	0.00dBm		-10.00dBn		
RF State				On 👻	On			
RF Coupling				Off 🝷	Off			

Fig. 3-4: Configuring the SGT pair from the BTC

- In the TX Fader A, select External RF and configure as shown in Fig. 3-4
 - Enter Target name to connect BTC to an external SGT. The format of *Target* Name is rssgt100a<serial_number_of_SGT>(see Fig.3-4)
 - Switch Remote Connection to ON.
 - If an external SGT is connected, the BTC automatically sets the following parameters on SGT over the control line:
 - Preset
 - RF frequency = 1GHz
 - RF Level = -10dBm
 - Ext. Ref = ON
 - RF output state =OFF
 - I/Q modulator state =ON
 - Digital I/Q input state =ON
 - Sample Rate Source = USER DEFINED
 - Digital I/Q input sample rate = 200MHz
 - Set RF Frequency and level setting as per user requirement, but make sure the frequency of all RF paths must be the same. In case that RF coupling is activated, RF frequency and level setting on SGT follows the RF frequency-/level setting on BTC.

/MGen 1	MMGen	2 1	X Fader	4				
requency A		Level A	s	ignal Type A				
1 000.000 000	000 MHz -	-10.00 dB	m 🔻	Off				
requency B		Level B		imnal Type B				
1 000.000 000	000 MHz -	-10.00 dB	m 🚽	3 Off	2			
Fading	Off - Cor	nfiguration			ard/Fin	e Delay	C Se	t to Default
Standard	DVB - Par	ameter Set				Easy 3		Equal
					DV	BH ICT	To 2	🔘 Сору
					DVBH S	SFN ICT		
State	1 - 1 Fine	1-2 _{Fine}	1-3 Finn Off		D	VBH PT	- 1 Fine	2 - 2 Finn A
Profile	Pure Doppler	Rayleigh 🔽	Rayleigh		DVBH	SFN PT	Pure Doppler	Rayleigh
Path Loss /dB	o.00	0.00	Rayleigh	1	IBRAI P	ortable	3.00	Rayleigh
Basic Delay (us	0.000 000 0	0.000 000 0	0.000	IEC	62002 P	ortable	0.000 000 0	0.000 0
Additional Delay dus	0.000 000 0	0.000 000 0	0.000	Pedestriar			28.000 000 0	0.000 0
Resulting Delay us	0.000 000 0	0.000 000 0	0.00	Pedestrian (28.000 000 0	0.000 0
Power Ratio /dB	0.00	0.00					0.00	1
Frequency Spread	0.100 0	0.100 0	(80 km/h	0.100 0	0.1
Const Phase /Deg	0.0	0.0		Motorway	Rural 10	00 km/h	0.0	
Speed km/h 💌	2.880	0.000		0.000	0.000	0.000	2.880	0
Statistics and the state	-1.00	1.00		1.00	1.00	1.00	1.00	70

Fig. 3-5: Selecting and saving pre-defined Fading profile

- Follow the sequence as shown in Fig. 3-5
 - 1: Select the relevant Standard from DVB, DAB, ATTC
 - 2: Select the desired fading profile from the drop down menu
 - 3: Click the save icon to Save Fading Profile

In order to set user defined arbitrary fading profile, skip steps explained for Fig. 3-5 *and* Fig. 3-7.

IMGen 1 MI	MGen 2	TX Fader A			
requency A	Level A	Sig	gnal Type A		
1 000.000 000 000 M	Hz -10.00 dE	Bm 💌	Off 👻		
requency B	Level B	Sig	gnal Type B		
1 000.000 000 000 M	Hz -10.00 dE	Bm 👻	Off 👻		
Base	bands	Streams	Fading Configuration	Concession of the local division of the loca	
			C Set to Def	ault	
A		A			
вв	FAA		Mode		Advanced
		В	Signal Routin	g	1x4 MIMO
	1.1				1x2 MIMO
		c	Apply		2x1 MIMO
					2x2 MIMO
BB B	FAD	D,			1x3 MIMO
					1x4 MIMO

Fig. 3-6: Baseband Configuration on BTC

- Go in to Fading/Baseband Config. (shown in Fig. 3-6)
 - Set Mode: Advanced
 - Set Signal Routing : 1x4 MIMO
 - Select Apply

Fading	On 🕶	Configuration	Standard/Fine Delay	🔇 Set to Default
Standard	User -			😳 All Equal

Fig. 3-7: Coping pre-defined fading profile in MIMO configuration

- Switch Fading: ON and Standard :User (shown in Fig. 3-7)
- Click on the Save icon and Recall the file from Step 3 of Fig. 3-5

At this point, re-apply the baseband settings as mentioned in Fig. 3-6.

TX Fade	r A	MMGen	1 1	AMGen 2				
requer	ncy A		Level A	Signa	al Type A			
1 000.0	000 000	000 MHz 🕶	-10.00 dB	im 💌	Off 🕶			
requer	псу В		Level B	Signa	al Type B			
1 000.0	000 000	000 MHz 🕶	-10.00 dE	im 💌	Off 🕶			
Fading		Off - C	onfiguration		Standard/	Fine Delay -	🜔 Se	t to Defaul
Standa	rd	User -					😑 All	Equal
					Copy Path	Group 1	To 2	🕕 Сору
		1 - 1 Fine	1 - 2 _{Fine}	1 - 3 _{Fine}	1 - 4 Standard	1 - 5 Standard	2 - 1 Fine	2 - 2 Fine
Power Rati	io /dB	10.00	0.00	0.00	0.00	0.00	10.00	t.
Frequency	Spread	0.100 0	0.100 0	0.100 0	0.100 0	0.100 0	0.100 0	0.11
Const Phas	æ /Deg	0.0	0.0	0.0	0.0	0.0	0.0	
Speed	km/h 💌	2.988	2.988	2.988	2.988	2.988	2.988	2
Freq. Ratio))	0.50	1.00	1.00	1.00	1.00	0.50	
Freq. Shift	/Hz	0.000 0	0.000 0	0.000.0	0.000.0	0.000.0	0.000.0	0.0
Res. Dopple	er Shift /Hz	2.77	2.77	2.77	2.77	2.77	2.77	
Coefficien	e (Aatrix	Matrix	Matrix	Matrix	Matrix	Matrix	Matrix
Lognormal	State	Off	Off	Off	Off	Off	Off	Off
Local Con	istant /m	200.0	200.0	200.0	200.0	200.0	200.0	21
Standard	Dev. /dB	0	0	0	0	0	0	

Fig. 3-8: Fading profile and antenna correlation matrix configuration

Follow the sequence as shown in Fig. 3-8

NOTE: In case of arbitrarily setting fading profile, set relevant fading profile, signal delay, speed etc. for all multipath signals (i.e. 1-1, 1-2,...,2-1, 2-2.... and so on).

- 1: Scroll down to coefficient parameter
- 2: Click on correlation matrix box

) F	Prev	Copy To Pre	v	8	Copy To Ne	xt 🗿	Copy To All	C Next	-
Matri	x Mode		Indiv	idual 🔻 Da	ata Format		Ma	ignitude-P	hase
latrix -			2		3			_	
	Magnitude	Phase /	Magnitude	Phase /*	Magnitude	Phase /*	4 Magnitude	Phase /*	Confli
(AA)	1.000 0	0.00	0.300 0	0.00	0.700 0	0.00	0.500 0	0.00	
	0.300 0	0.00	1.000 0	0.00	0.100 0	0.00	0.200 0	0.00	
(AB)		0.00	0.100 0	0.00	1.000 0	0.00	0.100 0	0.00	
(AB) (AC)	0.700 0						1.000 0	0.00	

Fig. 3-9: Correlation Matrix Configuration

- Set Correlation matrix as required
 - Select Copy to All and Accept

NOTE: Fig. 3-9 shows a realistic setting of the correlation matrix, a detailed discussion on the topic can be found at the end of this application note in the Appendix section.

BTC-100103 V2.0.0.2					e	9 0	?	2	Ħ	٩	*	E	A
MMGen 1	MMGen	2	ТХ										
Frequency A	a	Level A		Signal Typ	e A								
1 000.000 0	00 000 MHz 💌	-10.00	dBm 🔻	c	off -								
Frequency B	í.	Level B		Signal Typ	eВ								
1 000.000 0	00 000 MHz 🔻	-10.00	dBm 🔻	c	off •								
SignalGen A	Tx Distort A	Fader MI	MO	Noise A	Rx	Distort. A		Modu	ulation	A	F	RF A	
Off 🖵	On	•	•	off 👻		On	->		V On	16		V 01	
	Interferer A			Noise C	C				0).			
	None 🕶			Off -					. ~				
					DIG	I/Q C	Jui	.pu	Ľ				
SignalGen B	Tx Distort. B		1	Noise B	Rx	Distort. B		Modu	lation	в		RF B	
off 👻	On			off -		On			V On			V 01	0
	Interferer B			Noise D	F				0);			
	None 💌		ha 👘	Off 👻					4 0				
					DIG	i I/Q (Ju	ipu	ιD				

Fig. 3-10: Main menu of TX Application on BTC

- Switch on Modulation A , RF A, Modulation B and RF B
- Next Click on Dig I/Q Output C and Dig I/Q Output D (Fig. 3-10)
 - Set I/Q Digital Output C and I/Q Digital Output D as shown in Fig. 3-11

			1	
State		On 🕶	Digital Impairments	
Sample Rate			State	Off
Source	Us	ser Defined -	I Offset	0.00 %
Value	200.000 00	00 000 MHz 🔻	Q Offset	0.00 %
Connected Device —			Quadrature Error	0.00 deg
SGT100A (1022	91) DIG IQ II	۷	Amplitude Imbalance	0.00 %
Signal Output			Skew	0 ps
Set Level Via	1	Peak Level 🔻	I/Q Delay	0 ps
Peak Level		0.00 dBFS -		
Level		4.44 dBFS		
		4.44 dBFS On •	Diaital Impairments	
I/Q Digital Outp State			Digital Impairments	Off
I/Q Digital Outp	ut D			
I/Q Digital Outp State Sample Rate	ut D Us	On -	State	Off
I/Q Digital Outp State Sample Rate Source Value	ut D Us	On ▼ ser Defined ▼	State I Offset	Off 0.00
VQ Digital Outp State Sample Rate Source Value Connected Device —	ut D Us 200.000 00	On - ser Defined - 10 000 MHz -	State I Offset Q Offset	Off 0.00 %
VQ Digital Outp State Sample Rale Source Value Connected Device SGT100A (1018	ut D Us 200.000 00	On - ser Defined - 10 000 MHz -	State I Offset Q Offset Quadrature Error	Off 0.00 % 0.00 % 0.00 deg
VQ Digital Outp State Sample Rale Source Value Connected Device SGT100A (1018	ut D Us 200.000 00 38) DIG IQ IN	On - ser Defined - 10 000 MHz -	State I Offset Q Offset Quadrature Error Amplitude Imbalance	Off 0.00 % 0.00 % 0.00 deg 0.00 %
I VQ Digital Outp State Sample Rate Source Value Connected Device – SGT100A (1018 Signal Output	ut D Us 200.000 00 38) DIG IQ IN	On - ser Defined - 10 000 MHz -	State I Offset Q Offset Quadrature Error Amplitude Imbalance Skew	Off 0.00 % 0.00 % 0.00 deg 0.00 % 0 ps

Fig. 3-11: I/Q Digital Output

- Configure both I/Q Digital Output C and D as shown in Fig. 3-11,
 - Switch State: On
 - Source: User Defined
 - Sample Rate Value: 200 MHz

The 1x4 spatial diversity MIMO channel simulation using BTC and SGT pair is now successfully implemented. Next, set the desired broadcast transmission standard and start receiver diversity measurements.

3.4 Generation of Signals with Different Transmission Standards

BTC-100006 V2.10.0.0			. 0 ?	2 14 🔧	★ ◘ ♠
ТХ	MMGen 1				
Frequency A 473.000 000 000	Level A MHz v -51.00 (Signal Tyj dBm ▼	be A Off ▼		
off Inter	Pistort. A Fader Mi On Iferer A None	MO Noise A Off 💌	Rx Distort. A	Modulation A	RF A On
Off Inter	rferer B	Noise B Off V	Rx Distort. B	Modulation B On	RF B On

Fig. 3-12: Main Menu of the TX application of the BTC

MMGen 1	MMGen	2	TX Sign	nalGen A	1				
Frequency A		Level A		Stan	dard A	Guard Interva		Jsed Band	width A
1 000.000 000 000	MHz 🕶	-10.00 c	iBm 💌		OVB-T/H -	1/3	2 -	7.607 142	9 MHz
Frequency B		Level B		Signa	al Type B				
1 000.000 000 000	MHz 🕶	-10.00	dBm 🝷		Off 🕶				
					AWGN		c		
Signal Type			Digital T		AWGN				Off
Transmission Standard			DVB-T/H -		C/N			20.00 dB	
Frequency Offset		0.000	000 0 MH	Hz ▼ .	Settings				
					Bandwidt	n Coupling			Off
					Receiver	Bandwidth		8.000 000 0) MHz
					Generated	Noise BW		120.000) MHz
								t Digital I/G	

Go in to SignalGen A (shown in Fig. 3-12)

Fig. 3-13: Transmission standard selection on BTC

- Click on Signal menu (Fig. 3-13)
 - Signal type : Digital TV
 - Transmission Standard: Select the required terrestrial standard (such as DVB-T, DVB-T2, ATSC, ISDB-T, DTMB, T-DMB)
 - Set Receiver Bandwidth as required
 - Next go in to Input Signal menu and set Source as MM Generator
- From Fig. 3-2, click on *MMGen 1* and then click on *Player*

MMGen 1 Player	MMGen 2	TX SignalGe		
Play File Running 00:00:00.000		00.000		0.00.23.040 Data Rate
DIVER.TRP	00:00:08.192			5.018 502 Mbit
File 🖹		D:\T	SGEN\SDTV\DVB_25Hz	1720_576i\LIVE\DIVER.TRP
Date	04.06	2014 07:54:02	Size	14 MByte
Orig. Loop Time		23.040 s	Orig. Data Rate	5.018 502 Mbit/s
Player Output			Seamless Loop	
Data Rate	5.018 5	i02 Mbit/s 🔹	Continuity Counter	On
Packet Length		188	PCR, DTS/PTS	On
Nullpacket Stuffing		Off 🔻	TDT/TOT	On
Stop Data	ت: ا	None 🕶		
Play Window			1	
Start		00:00:00.000		
Stop		00:00:23.040		
Reset Window			Pause	Stop

Fig. 3-14: MM Generator player setting

- Configure the MMGen 1 player as shown in Fig. 3-14
 - Select DIVER.TRP file from D:\TSGEN\SDTV\DVB_25Hz\720_576i\LIVE\DIVER.TRP

At this point, the instruments are properly configured and ready for testing the DUT receive diversity performance.

4 Appendix

Correlation Matrix Configuration

In order to test MIMO receivers under real-world conditions, a certain degree of correlation between the emulated radio channels has to be simulated. Channel correlation defines the coupling relationship between the signals transmitted over the individually faded channels. This coupling is quantified in terms of a correlation matrix.

The correlation between two fading paths is defined by a complex correlation coefficient that is a measure for the similarity of the two signals. The complex correlation coefficient is expressed as a pair of numbers in either Cartesian form (Real-Imag) or polar form (Magnitude-Phase). The polar form is perhaps more descriptive, since it directly gives the amplitude and phase relationship of the two signals. Perfect correlation means Magnitude = 1.00 and Phase = 0.00, whereas Magnitude = 0.00 and Phase = 0.00 means absolutely no correlation

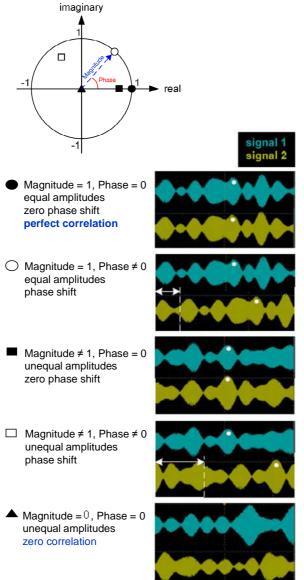


Fig. 4-1: Illustration of the complex correlation coefficient in polar form (Magnitude and Phase). Five example correlation coefficients are depicted. The corresponding correlations between two test signals are shown. [2]

In order to show the influence of the correlation for best case scenario, a 10 MHz frequency offset is set for all of the four RF paths. **Note: This is not a realistic scenario. The frequency offset is just needed here for demonstration purposes.**

In real MIMO applications the four TX signals are transmitted at the same center frequency.

RF A: 1000 MHZ, RF B: 990 MHz, RF C: 980 MHz, RF D: 970 MHz

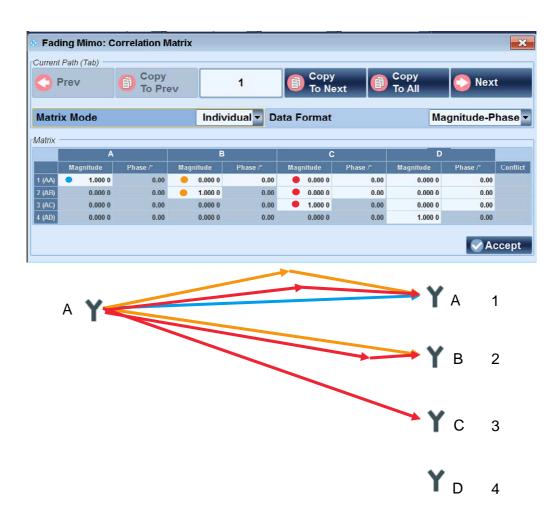
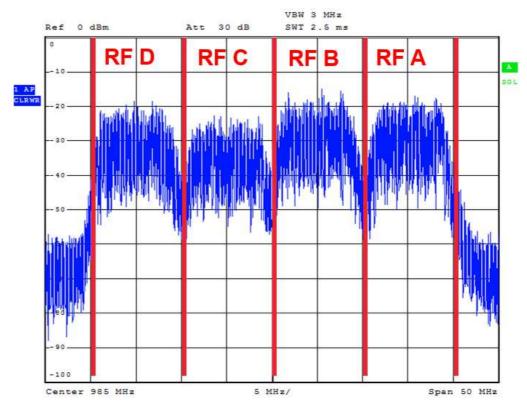



Fig. 4-2 shows the best case scenario, Transmit TX (A) to Receive RX (A) has a correlation of 1.00. The second transmission AB direct line of sight connection has 1.00 correlation, the coupling because of AB transmission has no correlation. The transmission channels are colored in orange. The AC LOS connection has 1.00 correlation, the two other AA and AB has no correlation. The channel for AC case is marked in red. The forth channel for AD is not shown for clarity. This is best case scenario because all direct line of sight connection are statistically independent.

The spectrum for this scenario is shown in Fig. 4-3. All the 4 channels are statistically independent of each other.

Fig. 4-3: Spectrum demonstrating all statistically independent channels

In order to show the influence of the correlation for worst case scenario, a 10 MHz frequency offset is set for all of the four RF paths. **Note: This is not a realistic scenario. The frequency offset is just needed here for demonstration purposes.**

In real MIMO applications the four TX signals are transmitted at the same center frequency.

RF A: 1000 MHZ, RF B: 990 MHz, RF C: 980 MHz, RF D: 970 MHz

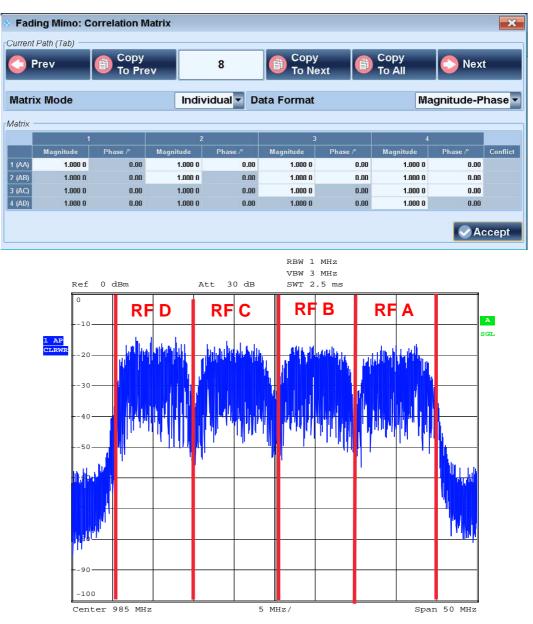
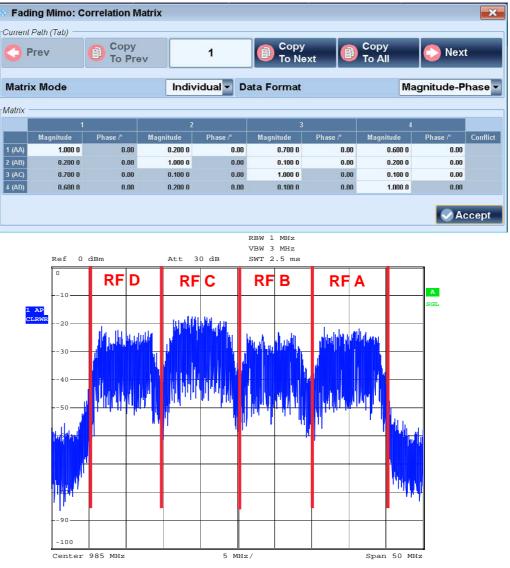



Fig. 4-4: Spectrum demonstrating all statistically dependent channels (Worst case scenario)

Fig. 4-4 shows the worst case scenario. All streams are statistically dependent. This means that all the transmission channels undergo the same fading effects. In case of a deep fade, all channels would be effected the same way and the receive data throughput would drop significantly. Therefore, MIMO diversity benefit is not experienced here at all.

In order to show the influence of the correlation for a real world scenario, a 10 MHz frequency offset is set for all of the four RF paths. **Note: This is not a realistic scenario. The frequency offset is just needed here for demonstration purposes.**

In real MIMO applications the four TX signals are transmitted at the same center frequency.

RF A: 1000 MHZ, RF B: 990 MHz, RF C: 980 MHz, RF D: 970 MHz

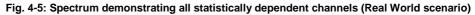


Fig. 4-5 shows the spectrum derived from the correlation matrix of a real world scenario where each channel has a bit of coupling with all other antennas in the MIMO system. Of course, in addition to the amplitude variation, there would also be phase offsets. However, if the antennas are positioned far apart from each other and have a high degree of isolation, the coupling ratio could also be zero. The correlation matrix would have to be adjusted as per testing requirement.

5 Literature

- 1. 1MA142: Introduction to MIMO, Schindler, Schulz, Application Note, Rohde & Schwarz
- 2. 1GP51: Guidelines for MIMO Test Setups, C. Tröster, Application Note, Rohde & Schwarz
- 3. 7BM05: Fading Channel Simulation in DVB, Application Note, Rohde & Schwarz

6 Ordering Information

Designation	Туре	Order No.	
Broadcast Test Center*			
R&S [®] BTC	Broadcast Test Center	2114.3000.02	
R&S [®] BTC-B3106	Frequency range 100 kHz up to 6 GHz, RF Path A	2114.3200.02	
R&S [®] BTC-B3206	100 kHz to 6 GHz, RF path B	2114.3400.02	
R&S [®] BTC-B1	Baseband Generator 1st channel	2114.3500.02	
R&S [®] BTC-B2	Baseband Generator 1st channel	2114.3600.02	
R&S [®] BTC-K2500	Extended I/Q Interfaces Analog and digital IQ-Inputs and Outputs Enables installed hardware interfaces	2114.7293.02	
R&S [®] BTC-B11	Baseband Main Module, one I/Q path to RF	2114.6500.02	
R&S [®] BTC-B12	Baseband Main Module, two I/Q paths to RF	2114.6600.02	
R&S [®] BTC-B3100	Low Phase Noise	2114.6000.02	
R&S [®] BTC-B1031	Path A Fading Simulator	2114.3700.02	
R&S [®] BTC-B1032	Path B Fading Simulator	2114.3800.02	
R&S [®] BTC-B1034	Fading Simulator (path A and path B)	2114.3900.02	
R&S [®] BTC-K1034	MIMO Fading and Routing 20 Path, Bandwidth 160 MHz	2114.7064.02	
R&S [®] BTC-K1031	Dynamic Fading Additional fading profiles Birth Death, Moving propagation and more	2114.7158.02	
R&S [®] BTC-K1040	AWGN Generator Package up to 160 MHz bandwidth, additive white Gaussian noise, option package (2 paths)	2114.7770.02	
R&S [®] BTC-K20	Multimedia Generation Suite	Included with base unit	
R&S [®] BTC-K501	DVB-T DVB-H, realtime coder, 2 k-, 4k- and 8k mode	2114.6980.02	
R&S [®] BTC-K502	J.83/A/B/C Coder (DVB-C, US- Cable, ISDB-C) realtime coder, 16, 32, 64, 128, 256QAM up to 8 Msymb/s 64, 256, 1024QAM, up to 5.36Msymb/s	2114.6997.02	
R&S [®] BTC-K516	DVB-T2 Coder	2114.7035.02	

R&S [®] BTC-K518	ATSC M/H, 8VSB Coder	2114.7135.02
R&S [®] LIB-K56	ATSC and ATSC Mobile DTV streams	2116.9412.02
R&S [®] LIB-K57	DVB-T2 MI Streams	2116.9429.02
SGMA Vector RF Source*		
R&S®SGT100A	SGMA Vector RF Source	1419.4501.02
R&S [®] SGT-KB106 (optional)	Frequency extension to 6 GHz	1419.5708.02
R&S [®] SGT-K18	Digital Baseband Connectivity	1419.6240.02
R&S [®] SMU-Z6	Cable for connecting R&S [®] Digital I/Q Interfaces	1415.0201.02

*Other signal generator are available as well. More Options are available. The instrument's minimum configuration for this application is shown in the table. Please ask your local representative for a suitable configuration according to your needs.

Rohde & Schwarz

The Rohde & Schwarz electronics group offers innovative solutions in the following business fields: test and measurement, broadcast and media, secure communications, cybersecurity, radiomonitoring and radiolocation. Founded more than 80 years ago, this independent company has an extensive sales and service network and is present in more than 70 countries.

The electronics group is among the world market leaders in its established business fields. The company is headquartered in Munich, Germany. It also has regional headquarters in Singapore and Columbia, Maryland, USA, to manage its operations in these regions.

Regional contact

Europe, Africa, Middle East +49 89 4129 12345 customersupport@rohde-schwarz.com

North America 1 888 TEST RSA (1 888 837 87 72) customer.support@rsa.rohde-schwarz.com

Latin America +1 410 910 79 88 customersupport.la@rohde-schwarz.com

Asia Pacific +65 65 13 04 88 customersupport.asia@rohde-schwarz.com

China +86 800 810 82 28 |+86 400 650 58 96 customersupport.china@rohde-schwarz.com

Sustainable product design

- Environmental compatibility and eco-footprint
- Energy efficiency and low emissions
- Longevity and optimized total cost of ownership

Certified Quality Management

Certified Environmental Management ISO 14001

This application note and the supplied programs may only be used subject to the conditions of use set forth in the download area of the Rohde & Schwarz website.

 $\mathsf{R}\&\mathsf{S}^{\circledast}$ is a registered trademark of Rohde & Schwarz GmbH & Co. KG; Trade names are trademarks of the owners.

Rohde & Schwarz GmbH & Co. KG Mühldorfstraße 15 | 81671 Munich, Germany Phone + 49 89 4129 - 0 | Fax + 49 89 4129 - 13777

www.rohde-schwarz.com