

Introduction to Attribute Based
Instrument Drivers
Application Note

Products:

| R&SFSW

| R&SFSV

| R&SFSVR

| R&SFSQ

| R&SFSP

| R&SFSU

| R&SFSMR

| R&SFSUP

| R&SFSL

| R&SESL

| R&SFSC

| R&SFSH4/8

| R&SCMW

| R&SRTM

| R&SRTO

| R&SZNC

| R&SZNB

| R&SZVL

| R&SZVH

| R&SPR100

| R&SEM100

| R&SETL

| R&SETH

| R&SSFC

| R&SSFE

| R&SSFU

| R&SCLG

| R&SDVSG

This application note introduces a novel

attribute based architecture for

VXIplug&play instrument drivers. The

presented architecture uses the attribute

based concept of IVI-C instrument drivers

to introduce a two-layer design for

VXIplug&play instrument drivers.

In
tr

od
uc

tio
n

to
 A

ttr
ib

ut
e

B
as

ed

In
st

ru
m

en
t D

riv
er

s

Ji
ri

K
om

in
ek

, J
ue

rg
en

 E
ng

el
br

ec
h

t

12
 J

an
ua

ry
 2

01
5-

1M
A

17
0_

4e

Table of Contents

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 2

Table of Contents

1 VXIplug&play Instrument Drivers ... 3

1.1 Preface ... 3

1.2 The Definition of Instrument Drivers .. 4

2 Attribute Based Instrument Drivers 5

2.1 Attribute Access Functions ... 6

2.2 Attributes and its Data Types .. 6

2.2.1 Implementation of Attributes in C... 7

2.2.2 Implementation of Attributes in LabVIEW ... 7

2.3 Range Table .. 8

2.4 Repeated Capabilities .. 8

2.5 Multithread Safety .. 9

2.6 Events .. 9

3 Use of Rohde & Schwarz Attribute Instrument Drivers 10

3.1 How to Use Attributes in LabVIEW ...10

3.2 How to Use Attributes in LabWindows/CVI ...10

3.2.1 Repeated Capabilities in LabWindows/CVI ...13

3.2.2 Dynamic Repeated Capabilities in LabWindows/CVI14

3.3 How to Use Attributes in Microsoft Visual Studio Using C#15

3.3.1 Repeated Capabilities in C# ..18

3.3.2 Dynamic Repeated Capabilities in C# ..19

3.4 Tips and Tricks ...19

3.4.1 Execution Speed: Disable Instrument Status Checking19

3.4.2 How to Build Executables or Libraries in LabVIEW................................19

3.4.3 Error Handling: “Instrument version not valid”20

3.4.4 Error Handling: Range Checking ..20

3.4.5 How to Minimize the Size of an Attribute-Based Instrument Driver......20

4 Related Documents .. 23

5 References .. 24

VXIplug&play Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 3

1 VXIplug&play Instrument Drivers

1.1 Preface

The task of programming instruments in a test system has always been a concern for

end users and a major cost for the overall system development. Many users know that

programming can often be the most time-consuming part of developing a system. The

developer spends much valuable time learning the specific programming requirements

of each instrument in the system. Almost all instruments are designed for interactive

use through a physical front panel and also offer remote control capability via a

communication port on the backside of the instrument. The details for how to program

the instrument remotely are usually documented in the instrument manual in the form

of ASCII command sets that cause the instrument to perform the desired operation.

Documenting an instrument command set in the user manual, along with some

example program listings, has traditionally been the standard method for an instrument

vendor to assist the end user in programming the instrument. These documentation

methods have served the industry well for many years, but this approach still places

the responsibility for writing the program code on the user, many of whom may end up

writing very similar application programs.

If the same command works for multiple instruments, regardless of the manufacturer,

users can interchange or upgrade instruments and reduce the amount of changes to

their application programs. In particular, many of the installed base of users who had

substantial investments in their software environments, that did not easily lend

themselves to software modularity, lobbied for this approach. Through the mid to late

1980s, many standard organizations, including the IEEE, worked on this objective with

little progress. The IEEE 488.2 specification [ANSI/IEEE Std 488.1-1987], completed in

1987, more carefully defined the operation of instruments like the program message

exchange protocol, but did not address the issue of standard command sets.

In 1990, the SCPI
1
 Consortium [The SCPI Consortium] was formed, which became

part of IVI Foundation in 2002. This organization approved a specification for

standardized commands for message-based programmable instruments. The SCPI

Consortium is not active anymore and the last updated document was published in

1999 [The SCPI Standard]. While more and more companies continue to endorse the

SCPI standard and use it in their new instrument designs, still instruments available

today do not use this standard command set. In addition, while many users of SCPI

instruments appreciated the progress and have experienced improvement in

productivity once they learn the standard command set, instrument interchangeability

is still not a reality because most instruments have different, often unique functionality

and therefore a command set different to the SCPI standard command set. Moreover

syntactically equal SCPI commands are a necessary, but not a sufficient condition for

instrument interchangeability.

While the SCPI standard is certainly recognized by the entire industry as a step

forward, the lack of progress on this issue encouraged both users and vendors to

explore other approaches before SCPI was completed.

1
 Standard Commands for Programmable Instruments

VXIplug&play Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 4

They needed to decrease the time required to program instruments, facilitating

instrument interchangeability and easing system maintenance. Rather than trying to

solve the problems by standardizing the instruments from all suppliers, both users and

vendors began to take advantage of new computer science technology to address the

issues by making software more modular and flexible.

1.2 The Definition of Instrument Drivers

An instrument driver, in the simplest definition, is a set of software routines that

handles the programmatic details of controlling and communicating with a specific

instrument. The most successful instrument driver concepts have always distributed

instrument drivers in source code and provided end users with access to the same

tools developers use to write drivers. With this philosophy, new instrument drivers were

often easily developed by end users through modifying an existing driver for another

instrument. End users, in general, had come to view the availability of an instrument

driver as an important factor in the choice of a particular instrument. However, users

still had access to standard instrument driver development tools and source codes for

other instruments.

VXIplug&play instrument drivers are defined by VXIplug&play Systems Alliance

[VXIplug&play Systems Alliance], which is part of the IVI (Interchangeable Virtual

Instrument) Foundation [Interchangeable Virtual Instrument Foundation] since 2002.

These drivers offer a simple API (application programming interface) using non

structured data types. This API is defined by a so called “function panel file” which

contains graphical panels. Each of these panels is representing a function's prototype.

Functions are designed to group several instrument's parameters which are logically

tied one to each other. It allows the driver's user to make instrument setup or

measurement in less steps compared to sending SCPI commands using low-level or

VISA functions [Virtual Instrument Software Architecture]. On the other hand, there are

cases where access to specific commands is needed.
Modern instruments capable of measuring, generating and analyzing advanced
signals, such as WiMAX

2
 or LTE

3
, are very complex and sometimes it may be

necessary to configure only a single parameter of the instrument, usually because of
speed (either speed of software execution or speed of instrument's internal
reconfiguration and measurement). Formerly this contradiction was solved by sending
SCPI commands directly using either VISA low level functions like the VISA
Read/Write, or utilizing the function of the driver that is configuring this parameter.
However, issues like instrument state synchronization or error checking needs to be
solved by the user. To avoid mixing two different programming techniques new drivers
have been designed with layered API consisting of low level and high level functions.
Low level functions are usually using only one SCPI command. High level functions are
then calling into several low level functions according to its parameters. While this API
structure allows the user to benefit from both having well organized high level functions
and having low level functions, it leads to high number of exported functions (and VIs
in case of LabVIEW

4
 instrument drivers).

Rohde & Schwarz offers a new approach to balance the instrument driver's API called

Attribute Based Instrument Drivers.

2
 For details on WiMAX please visit http://www.rohde-

schwarz.com/appnote/1MA96.html
3
 For details on LTE please visit http://www.rohde-schwarz.com/appnote/1MA111.html

4
 For details on National Instrument LabVIEW please visit http://www.ni.com/labview/

Attribute Based Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 5

2 Attribute Based Instrument Drivers
An attribute can be defined as an element of a hardware configuration of an instrument

or a software configuration of an instrument driver. Thus each instrument setting is

associated with a hardware configuration attribute.

In general an attribute based driver is a standard VXIplug&play instrument driver. It can

be used as a traditional single layer instrument driver. However, if the user needs to

configure or measure a single parameter which is part of complex high level function.

He does not have to directly use a SCPI command or if available, a low level function,

but can use the appropriate attribute access function. For instance the high level

function of the Rohde & Schwarz spectrum analyzer instrument driver (rsspecan
5
) for

configuring the sweep coupling sets three parameters: the resolution- and the video

bandwidth, as well as the sweep time. So for example to configure only the resolution

bandwidth, the corresponding attribute can be used (illustrated in the figure below step

a) and step aa)).

Attribute based drivers are leveraging the best from both VXIplug&play instrument

drivers and IVI-C instrument drivers. Low level functionality is implemented in the same

way as in IVI-C drivers via attributes. The high level driver functions are similar to the

IVI standard, but not limited to the restrictions of the IVI class definition, like strict

definition of function names, number of arguments and its names of functions which

are following the IVI class specification.

Most high level functions are implemented using attributes as well. In this case also the

shown steps a) and aa) are executed when calling one of theses high level functions.

However, not all instrument commands can be implemented as attributes, thus some

functions are not using attributes, but are implemented in the traditional way, as

already mentioned above. In that case the shown step b) is executed. For instance all

functions, which have arrays as part of their API, fall into this category, for example a

recorded trace of a spectrum.

Figure 1: Architecture of Rohde & Schwarz attribute based instrument drivers: Example of

instrument hardware configuration setting, e.g. a)-aa) frequency setting or b) reading trace data

5
 The rsspecan instrument driver is available at http://www.rohde-schwarz.com/drivers.

http://www.rohde-schwarz.com/drivers

Attribute Based Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 6

2.1 Attribute Access Functions

When a high level function in an instrument driver queries or modifies the current

setting of an attribute, it does so by calling one of the Rs_GetAttribute or

Rs_SetAttribute functions. Each driver contains five prefix
6
_GetAttribute functions and

five prefix_SetAttribute functions, one for each possible attribute data type. These are

called typesafe functions.

Each driver also exports five
7
 typesafe prefix_CheckAttribute functions. Instrument

drivers can call these functions to verify that a particular value is valid for an attribute.

This allows users to bypass the high level functions in instrument drivers and directly

query and modify the values of instrument attributes. The prefix_GetAttribute,

prefix_SetAttribute, and prefix_CheckAttribute functions are merely wrappers around

calls to the Rs_GetAttribute, Rs_SetAttribute, and Rs_CheckAttribute functions.

This instrument driver contains high-level functions that set most of the instrument

attributes. It is best to use the high-level driver functions as much as possible, because

they handle order dependencies.

2.2 Attributes and its Data Types

Attributes can be grouped into two categories – hardware configuration attributes and

software control attributes. Generally, each instrument setting is associated with a

hardware configuration attribute, e.g. a frequency setting. Hardware configuration

attributes allow the user to set and query values of the associated instrument settings.

Software control attributes control how the instrument driver works rather than

representing particular instrument settings. Those allow users to enable and disable

features such as range checking and instrument status checking. For more information

about that, please refer to chapter 3.4.

6
 prefix stands for a corresponding attribute based instrument driver, e.g.

prefix_SetAttributeBoolean(…) stands for rsspecan_SetAttributeBoolean(…) in case of
the rsspecan attribute based instrument driver.
7
 Five type safe functions are available for following data types: ViBoolean,

ViInt32, ViReal64, ViString and ViSession.

Attribute Based Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 7

Attributes are used in conjunction with the following data types:

 ViBoolean

 ViInt32

 ViReal64

 ViString

 ViSession

SCPI commands with enumerated string argument, e.g.

[SENSe<1|2>:]AVERage:TYPE VIDeo | LINear …) are realized by an attribute

of data type ViInt32 and proper range table (see image below). The SCPI command

itself is implemented in the attribute data structure which is encapsulated by the

instrument driver.
For instance a SCPI command with more than one argument can’t be implemented as
attributes, but instead are implemented as high level functions. The same is also true
for SCPI commands which are dealing with data sets. In the Rohde & Schwarz
spectrum analyzer for example, the function for reading a Y-trace of a spectrum
analyzer is implemented in that way.

2.2.1 Implementation of Attributes in C

Attributes are implemented as global data structures defined in file 'prefix_attributes.c'.

Because all drivers are distributed in source code, users can freely modify, remove or

add any attribute, range table and repeated capabilities. Data structures are interpreted

by the core, which is implemented in files ‘rsidr_core.c’ and ‘rsidr_core.h’. These two

files are always the same for all Rohde & Schwarz attribute drivers, thus when

combining source codes of two different drivers these two files need to be added to the

project once. Using attributes in the C-based LabWindows/CVI
8
 environment is

described in chapter 3.2.

2.2.2 Implementation of Attributes in LabVIEW

Similarly to C implementation, in the latest version attributes and range tables in

LabVIEW are implemented as global structures, which are accessed via global

variables. Search for attributes and range tables uses pre-generated sorted hash

tables and binary search instead of linear search. A global variable containing attribute

definition is unique for each instrument driver as well as the driver core, which is

distributed as LabVIEW library. This is the same for all Rohde & Schwarz attribute-

based LabVIEW drivers. As speaking of attribute based driver which are shipped as

project based LabVIEW code, here the same implementation of the functional global

variable is realized, the only difference are different file names of the related files.

Using attributes in LabVIEW is described in chapter 3.1.

8
 For details on National Instrument LabWindows/CVI please visit

http://www.ni.com/lwcvi/

Attribute Based Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 8

2.3 Range Table

An Attribute can have its range table which defines the attribute's valid values. There

are three types of range tables:

● Ranged - valid values are defined as a closed interval of integer or floating point

values (according to the range table's data type). The number of marker available

on a spectrum analyzer can be named as example.

● Coerced - valid values are defined as a discrete set of numbers. If this range table

is associated with an attribute, then the attribute values are coerced to the nearest

value listed in the coerced range table. For example the number of sweep points of

a spectrum can be limited to an increment of 100 for number of points equal or

greater than 201.

● Discrete - valid values are defined as a discrete set of numbers. No coercion

applies. This range table is also used for mapping of integer constant values to

enumerated string command arguments. For instance the string ‘VIDeo’, which

needs to be sent to the instrument can be mapped to the symbolic constant

PREFIX_VAL_AVERAGE_TYPE_VIDEO with integer value (0 for instance).

2.4 Repeated Capabilities

Many instruments contain multiple instances of the same type of functionality. For

example, many instruments have multiple channels, windows or traces with

independent settings. The general term for functionality that is duplicated in an

instrument is repeated capability. Repeated capabilities can be complex. An instrument

may have multiple sets of repeated capabilities, such as windows and traces, or

markers. Also, repeated capabilities may be nested within other repeated capabilities,

for example traces within displays.
Repeated capability instances are specified by a string parameter to each function that
accesses the repeated capability or by a function that selects the active instance.
Attribute access functions are provided with a string parameter which selects the
capability to be used by function. To define the usage of a particular capability fill the
string with a proper value. To use more than one repeated capability in one attribute,
separate them with comma.

The attribute access functions include a repeated capability selector parameter for use

with channel-based attributes or attributes of repeated capabilities. When using

attribute access functions on attributes (see chapter 2.1) that do not apply to repeated

capabilities, application programs pass VI_NULL or an empty string for the parameter.

Dynamic Repeated Capabilities

Some instruments, for instance R&S
®
ZNB, require user to create own identification

strings for repeated capabilities (traces, channel, windows, etc.). In this case the

multiplicity and the formatting of the so called dynamic repeated capabilities is defined

by the user in the run time. In general this implies that the user must allow the driver to

track the creation and the deletion of such repeated capabilities.

Even dynamic repeated capabilities are statically predefined with default values, which

can be found on the instrument after its reset. For instance there’s always after reset

one trace, one window and one channel defined in network vector analyzer. These

capabilities are statically predefined in instrument driver. However, these can be

deleted or replaced afterwards during run time of the software.

Examples for this topic are presented in chapter 3.2.1 and chapter 3.3.1.

Attribute Based Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 9

2.5 Multithread Safety

Rohde & Schwarz attribute drivers are multithread safe. Multithread safety means that

multiple threads in the same process can use the same driver session and that

different sessions of the same driver can run simultaneously on different threads.

To access a driver session from multiple threads, the application initializes the driver in

one thread and then shares the session handle or object with other threads. If an

application wants to treat several calls to a driver as a single operation that other

threads must not interfere with, the application must block other threads during the

sequence of calls. The application can do this by using synchronization functions

provided by the operating system or programming environment. Locking inside of a

driver has not yet been implemented.

Multithread safety does not provide any mechanism to allow multiple processes to

share the same session. It also does not provide any mechanism to synchronize

between multiple threads or processes that open multiple sessions on the same

physical instrument. To synchronize access to the same physical instrument from

multiple processes, applications must use its own resource locking.

2.6 Events

Events are basically attributes with no data. This is different to IVI driver specification

which does not allow implementation of events via attribute engine. Events in Rohde &

Schwarz drivers are realized using prefix_SetAttributeViString with VI_NULL or an

empty string in place of the string argument.

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 10

3 Use of Rohde & Schwarz Attribute
Instrument Drivers
The following example is referring to the rsspecan and the rsvna instrument driver. The

described procedures are all adaptable to other attribute based Rohde & Schwarz

instrument drivers, only the naming of the files can be different. The naming convention

is PREFIX, where the PREFIX is the abbreviation of a specific instrument

 driver.

3.1 How to Use Attributes in LabVIEW

For LabVIEW instrument drivers please refer to a separate document extensively

dealing with this topic http://www.rohde-schwarz.com/appnote/1MA228.

Chapter 4.2 describes using the attributes in LabVIEW.

3.2 How to Use Attributes in LabWindows/CVI

This section explains how to use attributes in the rsspecan instrument driver. This is

necessary, for instance, if the driver does not support the functionality via high level

functions (API).

Please use the Driver Attribute Help chm file. This help file is accessible via the

Instrument Driver Help file (e.g. rsspecan_vxi.chm).

The rsspecan.sub file has to be added to the project. This file is mandatory for

browsing attributes.

Example: How to set the Frequency Start value by attributes

To select an attribute, use the provided function panels, which are included in the

instrument driver package. These instrument driver function panels can be found in:

Instruments=>ROHDE & SCHWARZ SpecAn=>Configuration=>Set/Get/Check

Attribute/Repeated Capabilities

http://www.rohde-schwarz.com/appnote/1MA228

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 11

Figure 2: Function panel for rsspecan driver attributes.

To open the function panel, double-click on the desired function. Fig. 9 shows the

function panel of "rsspecan_SetAttributeViReal64". Clicking on the "Attribute ID" text

box opens the "Select Attribute Constant" window.

Now you can select the desired attribute from the tree structured list. Each attribute

can have a different access type (read only, write only or read/write). Proper read/write

operation can be selected by the proper function panel, either Set Attribute, Get

Attribute or Check Attribute.

Repeated capabilities are set by using identifier or identifier names within the function

panel called rsspecan_GetAttributeRepeatedCapabilityId[s|Names].

For example, in Basic Operation use the Set Frequency Start value:

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 12

Figure 3: Selecting an attribute in the "SetAttributeViReal64" function panel.

1. Please select the desired attribute. To find the designated attribute easily the

rsspecan.chm help file can be used to look for it. Be aware of the fact that the tree

structures in the help file and the Express VI are the same.

2. Fill the Repeated Capabilities text box according to the documentation, e.g. “Win0”.

3. Type the desired frequency value in the Attribute Value text box, e.g. "1e+9".

4. Enter a valid instrument handle in the Instrument Handle text box.

5. It is strongly recommended to evaluate the return value of your function, if you type

the name of a declared integer variable in the Status text box.

6. To include the function into your source code, you can copy the created function

string out of the window on the button of the function panel and insert it into the

source code.

The result of this procedure is shown in Fig. 10.

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 13

Figure 4: Building a function string on the button of the "rsspecan_SetAttributeViReal64"

function panel.

The attribute and its features can be changed at any time later by right-clicking the

function and recalling the function panel. See Fig. 11:

Figure 5: Recalling the function panel to modify the attributes.

3.2.1 Repeated Capabilities in LabWindows/CVI

Repeated capability instances are specified by a string parameter for each property.

They can also be specified by a function which selects the active instance.

To define the usage of particular capability, enter the proper value in the Repeated

Capability text box in the function panel. If more than one repeated capability is

required for one attribute, separate them with a comma.

A marker example using repeated capabilities is shown in the figure below:

Figure 6: Example of "Repeated Capabilities" in LabWindows/CV.

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 14

The attribute and its features can be changed at any time later by recalling the function

panel, which recalls the shown panel.

3.2.2 Dynamic Repeated Capabilities in LabWindows/CVI

In comparison to the previously described repeated capabilities, the so called dynamic

repeated capabilities are specified by a user defined string parameter for each property

in run time. For example, a property can be a channel or a trace of vector network

analyzer. The instrument driver stores and tracks this user defined string parameter

each time a new parameter is created. For this reason it is important to create new

using the provided high level functions (e.g. “rsvna_TraceAddDiagramArea(…)”).

Creating new parameters using attribute access functions would not allow the

instrument driver to trace this newly created dynamic repeated capability accordingly.

How to use a high level function is shown in the picture below.

Figure 7: Example how to create a dynamic repeated capability using a high level function

This example outlines how to use dynamic repeated capabilities, here “MyTrace2”, in

combination with an high level function as well as using it with a front panel.

Furthermore the default channel setup of the Rohde & Schwarz ZNB network analyzer

is required.

For the following example the dynamic repeated capability is fed into the driver

attribute access function via a constant string parameter.

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 15

Figure 8: Example how to use a dynamic repeated capability using the attribute-access

functions

After running this sequence a new channel and trace has been added on the

instrument and is stored in the instrument driver for future use. To access this new

trace the dynamic repeated capability “MyTrace2” has to be used. In this case the new

trace can be addressed by other high level functions, as well as using the attribute-

access functions directly. This attribute-access function is deleting the trace. The

showed sequence is deleting the repeated capability “MyTrace2” again.

3.3 How to Use Attributes in Microsoft Visual Studio

Using C#

This section explains how to use attributes in the rsspecan instrument driver in

Microsoft Visual Studio 2008. This is necessary, for instance, if the driver does not

support the functionality via high level functions (API).

In the following examples the programming language C# is used.

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 16

The rsspecan.cs (or the rsspecan64.cs
9
) file has to be added to the project. This file

comes together with the VXIplug&play driver and is a prerequisite for using the driver

in C#. Please note, that for the instruments that in the meantime have a IVI.NET – a

native .NET instrument driver available, the *.cs C# wrapper file is no more available in

the VXIplug&play driver installation. We encourage the user to switch to the native

.NET instrument driver.

To control an instrument via an attribute, use one of the provided get and set functions

of the C# wrapper. The available functions can be found in the following list:

● SetInt32 (rsspecan_SetAttributeViInt32)

● GetInt32 (rsspecan_GetAttributeViInt32)

● SetDouble (rsspecan_SetAttributeViReal64)

● GetDouble (rsspecan_GetAttributeViReal64)

● SetBoolean (rsspecan_SetAttributeViBoolean)

● GetBoolean (rsspecan_GetAttributeViBoolean)

● SetString (rsspecan_SetAttributeViString)

● GetString (rsspecan_SetAttributeViString)

● SetSession (rsspecan_SetAttributeViSession)

● GetSession (rsspecan_GetAttributeViSession)

The respective functions and their documentation can be found in the Instrument

Driver Help file in Instrument Driver Tree Structure=>Configuration=>Set/Get/Check

Attribute/Repeated Capabilities referring to listed function names in the brackets

above.

Example: How to set the Center Frequency value by attributes

This example shows how to use attributes without repeated capabilities. The use of

repeated capabilities is described in section 3.3.1.

To find the proper attributes for specific configurations, the rsspecan_vxi.chm help file

can be used. All available attributes are listed in the Instrument Driver Help chapter

under Driver Attribute Help; see figure below.

9
 It is important to distinguish between 32-bit and 64-bit remote control software

applications. These files are wrapper files for bitness dependent dynamically loaded
libraries. Please always configure your Microsoft Visual Studio project to be 32-bit or
64-bit as target. The default setup “Any CPU” must not be enabled. For further
information please refer to Application Note 1MA153, available on
http://www.rohde-schwarz.com/appnote/1MA153.

http://www.rohde-schwarz.com/appnote/1MA153

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 17

Figure 9: Documentation of available attributes in the rsspecan instrument driver.

C# attributes are accessible through the enum rsspecanProperties which is

defined in the namespace InstrumentDrivers of the wrapper file rsspecan.cs.

For example, in Basic Operation use the Center Frequency attribute

rsspecanProperties.FrequencyCenter (called

RSSPECAN_ATTR_FREQUENCY_CENTER in the VXIplug&play chm help file) for

configuring the center frequency as shown in the listing below:

using InstrumentDrivers;

namespace rsspecan_Application_Example

{

 class Program

 {

 static void Main(string[] args)

 {

 string resourceName = "TCPIP::FSP7-100894::INSTR";

 bool idQuery = true;

 bool resetDevice = true;

 //Open driver session

 rsspecan m_specAn = new rsspecan(resourceName, idQuery,

 resetDevice);

 //center frequency 1GHz

 double centerFrequency = 1e9;

 m_specAn.SetDouble(rsspecanProperties.FrequencyCenter,

 centerFrequency);

 //...insert more configuration and measurements here

 //Close driver session

 m_specAn.Dispose();

 m_specAn = null;

 }

 }

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 18

}

3.3.1 Repeated Capabilities in C#

Repeated capability instances are specified by a string parameter for each property.

They can also be specified by a function which selects the active instance.

To define the usage of particular capability, the following overloaded functions are

provided by the C# wrapper file, for example the rsspecan.cs:

● SetInt32 (rsspecan_SetAttributeViInt32)

● GetInt32 (rsspecan_GetAttributeViInt32)

● SetDouble (rsspecan_SetAttributeViReal64)

● GetDouble (rsspecan_GetAttributeViReal64)

● SetBoolean (rsspecan_SetAttributeViBoolean)

● GetBoolean (rsspecan_GetAttributeViBoolean)

● SetString (rsspecan_SetAttributeViString)

● GetString (rsspecan_SetAttributeViString)

A marker example using repeated capabilities is shown in the following example:

//repeated capabilty example

//set a marker to a specfic frequency

double freqPosition = 1.5e9;

m_specAn.SetDouble(rsspecanProperties.MarkerPosition, "Win0,M1", freqPosition);

The following figure outlines the “Supported Repeated Capabilities” of the attribute

rsspecanProperties.MarkerPosition (called RSSPECAN_ATTR_MARKER_POSITION

in the rsspecan.chm help file).

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 19

Figure 10: Marker example to explain repeated capabilities.

3.3.2 Dynamic Repeated Capabilities in C#

In comparison to previously described repeated capabilities, the so called dynamic

repeated capabilities are specified by a user defined string parameter for each property

in run time. For example, a property can be a channel, a trace or a window of vector

network analyzer. The instrument driver stores and tracks this user defined string

parameter each time a new parameter is created. For this reason it is important to

create new using the provided high level functions (e.g.

“m_specAn.TraceAddDiagramArea(…)“). Creating new parameters using attribute access

functions would not allow the instrument driver to trace this newly created dynamic

repeated capability accordingly. How to use a high level function is shown below.

/* add a new trace “MyTrace2” into a new diagramm area */
m_VNA.TraceAddDiagramArea(winNumber, chanNumber, "MyTrace2");

This example outlines how to use dynamic repeated capabilities, here “MyTrace2”, in

combination with high level function. To get this line of code executed, the default

channel setup of the Rohde & Schwarz ZNB network analyzer is required.

For the following example the dynamic repeated capability is fed into the driver

attribute access function via a string parameter.

/* delete the trace named "MyTrace2" */
m_VNA.SetString(rsvnaProperties.TraceDelete, "Channel1" /*default*/, "MyTrace2");

After running this code a new channel and trace has been added on the instrument

and is stored in the instrument driver for future use. To access this new trace the

dynamic repeated capability “MyTrace2” has to be used. In this case the new trace can

be addressed by other high level functions, as well as using the attribute-access

functions directly. This attribute-access function is deleting the trace. The showed

sequence is deleting the repeated capability “MyTrace2” again.

3.4 Tips and Tricks

3.4.1 Execution Speed: Disable Instrument Status Checking

If instrument status checking is enabled, the driver automatically checks the status of

the instrument after most operations. If the instrument indicates an error condition, the

driver returns a special error code. The user then calls the error query function to

retrieve the instrument specific error code from the instrument.

Instrument status checking is most useful during debugging. Once application

development is complete, this feature can be disabled to maximize performance.

3.4.2 How to Build Executables or Libraries in LabVIEW

The driver core of the attribute-based instrument drivers is dynamically linked to any
executed VI during runtime. This cannot be recognized by the LabVIEW application

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 20

builder. The LabVIEW application builder follows all static dependencies and includes
them in the distributed package when building an executable.

To create an executable in LabVIEW, please manually add all VIs in the

<instr.lib>\PREFIX _utility\callbacks folder to the LabVIEW project. In case of project

based driver please add the Private folder to your project. With this manual reference,

the driver core is included in the build and the driver core is accessible during runtime.

3.4.3 Error Handling: “Instrument version not valid”

If option checking is enabled, the driver checks first, if the following command is

supported by the connected instrument. While the initialization of the driver the “ID

Query” has to be enabled to correctly identify the connected instrument. Based on the

installed instrument options, the driver is generating the error “Instrument version not

valid” if the command is not supported by the instrument.

For extended debugging the option checking functionality can be disabled using the

function/VI “Option Checking” and set the input variable to “False”. This can be found

in the “Utility Functions” folder of the driver documentation

3.4.4 Error Handling: Range Checking

If range checking is enabled, the driver checks if the input parameters are within the

valid range for the connected instrument. Range checking is most useful during

debugging. After users have validated their programs, they can disable range checking

to maximize performance.

Using the function/VI “Option Checking” and set the input variable to “False”. This can

be found in the “Utility Functions” folder of the driver documentation.

3.4.5 How to Minimize the Size of an Attribute-Based Instrument Driver

The Rohde & Schwarz attribute-based instrument drivers are by definition divided into

different independent modules. These modules are based on the instrument’s

hardware and software options. Consequently, it is possible to include only the

instrument driver core modules and the other driver modules corresponding to the

instrument options used. This allows you to avoid unused driver modules within your

development project.

LabVIEW driver

To avoid unused VIs in a LabVIEW project, you can simply delete unused folders

inside the instr.lib folder. The folders minimally needed for a correctly operating

instrument driver are shown in the following, using the rsspecan LabVIEW instrument

driver as an example.

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 21

Figure 11: Possible configuration of the rsspecan instrument driver.

In the figure above, the minimal recommended configuration of the rsspecan LabVIEW
instrument driver is highlighted in gray. For example, to have a proper setup for
performing measurements on an LTE

10
 downlink signal, only the K100- EUTRA LTE

Downlink folder needs to be preserved besides the folders highlighted in gray. The
remaining folders can be easily deleted. The content of the LabVIEW
user.lib_express\rsspecan folder is mandatory.
This is procedure is also applicable to other attribute-based instrument drivers.

10

 UMTS Long Term Evolution (LTE) Technology Introduction

Use of Rohde & Schwarz Attribute Instrument Drivers

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 22

LabWindows/CVI and VXIplug&play driver

For C/C++-based projects, there is also the possibility to easily eliminate unused

source code. The source code files minimally needed for a correctly operating

instrument driver are shown below, using the rsspecan LabWindows/CVI instrument

driver as an example.

Figure 12: Possible configuration of the rsspecan instrument driver.

In the figure above, the minimal recommended configuration of the rsspecan
LabWindows/CVI instrument driver is highlighted in gray. For example, to have a
proper setup for performing measurements on an LTE

11
 downlink signal, only the

rsspecan_k100_k102.c file needs to be preserved besides the files highlighted in gray.
The remaining folders can be easily deleted.
This is procedure is also applicable to other attribute-based instrument drivers.

11

 UMTS Long Term Evolution (LTE) Technology Introduction

Related Documents

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 23

4 Related Documents
 Application Note 1MA153: Development Hints and Best Practices for Using

Instrument Drivers http://www.rohde-schwarz.com/appnote/1MA153.html

 Automatic Measurement Control, A tutorial on SCPI and IEEE 488.2; John M.

Pieper; Rohde & Schwarz GmbH & Co. KG

 IEEE Std 488.2-1992 IEEE Standard Codes, Formats, Protocols, and Common

Commands for Use With IEEE Std 488.1-1987, IEEE Standard Digital Interface for

Programmable Instrumentation

http://standards.ieee.org/reading/ieee/std_public/description/im/488.2-

1992_desc.html

References

1MA170_3e Rohde & Schwarz Introduction to Attribute Based Instrument Drivers 24

5 References
[1] ANSI/IEEE Std 488.1-1987 IEEE Standard Digital Interface for Programmable

Instrumentation

http://standards.ieee.org/reading/ieee/std_public/description/im/488.1-

1987_desc.html

[2] The SCPI Consortium

http://www.ivifoundation.org/scpi/default.aspx

Note: Became part of the IVI Foundation in 2002

[3] The SCPI Standard

http://www.ivifoundation.org/docs/SCPI-99.pdf

[4] VXIplug&play Systems Alliance

http://www.ivifoundation.org/VXIPlug_Play/default.aspx

Note: Became part of the IVI Foundation in 2002

[5] Interchangeable Virtual Instrument Foundation (IVI Foundation)

http://www.ivifoundation.org/

[6] Virtual Instrument Software Architecture (VISA)

http://www.ivifoundation.org/specifications/default.aspx

[7] IVI Driver Architecture Specification

http://www.ivifoundation.org/specifications/default.aspx

 About Rohde & Schwarz

Rohde & Schwarz is an independent group

of companies specializing in electronics. It is

a leading supplier of solutions in the fields of

test and measurement, broadcasting,

radiomonitoring and radiolocation, as well as

secure communications. Established more

than 75 years ago, Rohde & Schwarz has a

global presence and a dedicated service

network in over 70 countries. Company

headquarters are in Munich, Germany.

Environmental commitment

● Energy-efficient products

● Continuous improvement in

environmental sustainability
● ISO 14001-certified environmental

management system

Regional contact

Europe, Africa, Middle East

+49 89 4129 12345

customersupport@rohde-schwarz.com

North America

1-888-TEST-RSA (1-888-837-8772)

customer.support@rsa.rohde-schwarz.com

Latin America

+1-410-910-7988

customersupport.la@rohde-schwarz.com

Asia/Pacific

+65 65 13 04 88

customersupport.asia@rohde-schwarz.com

China

+86-800-810-8228 /+86-400-650-5896

customersupport.china@rohde-schwarz.com

This application note and the supplied

programs may only be used subject to the

conditions of use set forth in the download

area of the Rohde & Schwarz website.

R&S® is a registered trademark of Rohde & Schwarz
GmbH & Co. KG; Trade names are trademarks of the
owners.

Rohde & Schwarz GmbH & Co. KG

Mühldorfstraße 15 | D - 81671 München

Phone + 49 89 4129 - 0 | Fax + 49 89 4129 – 13777

www.rohde-schwarz.com

mailto:customersupport.asia@rohde-schwarz.com
mailto:customersupport.china@rohde-schwarz.com

