Products: Rohde&Schwarz Smart Instruments™ Family300 (SM300, FS300, FS315, AM300, UP300/350)

Rohde&Schwarz
Smart Instruments™ Family300
Basic Programming Guide

Application Note

Introduction to the fundamentals of programming the R&S Smart Instruments™ Family 300 in different
development environments.

&

ROHDE &SCHWARZ

W.Blanz 06/2007 — 1MA73_07E

Table of Contents

1MA73

R&S Smart Instruments™ Family300 Basic Programming

Guide
T INEOAUCTION .. 3
2 Basic Details about Smart Instruments™ccccoi i 3
3 Installing Instrument DriVers ... 4
4 InStrumMENt DIVEIS 6
5 Integrating Drivers into @ Project.........ooccuueiiiiiiiiiiieeee s 6
6 Using "FS300 Basic Measurement" for the First Timeccccccuee.. 15
7 "Resource String" and "Virtual Instrument Name".............ccccccevevneenn. 17
8 Where to Find Help on the Driver Functions........................... . 19
9 Which Data Type to US€ ... 19
10 REEIENCES ... e e e 21
11 Appendix: Contact our hotline..........cccccoooi 22
T2 KEYWOIAS ...t e e e e e e e s ee s 23

2 Rohde & Schwarz

1 Introduction

R&S Smart Instruments™ Family300 Basic Programming
Guide

Rohde&Schwarz provides instrument drivers available for all Smart
Instruments™. These drivers allow you to access instruments from various
programming environments under Microsoft Windows XP/2000. The
"Smart Instruments™ Programming Guide" deals with programming the
Smart Instruments™ Family300 utilising these drivers from within different
programming languages (CIC++, Visual Basic, LabView,
LabWindows/CVI). Use of this facility requires some basic prior knowledge
of programming in the individual languages.

2 Basic Details about Smart Instruments™

1MA73

The Smart Instruments™ Family300 is operated by remote control via the
USB host port. This means that the operating system used for remote
control purposes must provide in-house USB support. The drivers
described below support the Microsoft Windows XP and Microsoft
Windows 2000 operating systems.

Each Family300 instrument consists of two USB instruments, namely a
measurement and/or generator module, and the system controller
associated with the instrument platform in the power supply. A dedicated
USB driver has to be installed in Windows for each of these USB
instruments. Windows either asks you to install the appropriate device
driver or continues automatically if a driver has already been installed for
these instruments. The USB drivers are automatically installed in the
Windows system when the instrument driver is installed (see 3 Installing
Instrument Drivers).

£ B =
T
gs=x ¥ ¥
=z 5 7
* Jz
RF Oul a'w | Inside View of the
LFOW «—! llmmﬂm. Signal Generalor
[| \
5 1;:3Stive Fous USB-Master .
4) TS switch use I,;_‘_‘;
R B USE 11 158wt - Fd‘_“-—J_
\ . {1 USBHub | ‘ .
! : : — =
: y | " use | | F— =
Printer ! Ext=mal PC
uss | Man-Maschine-Interface cables
|
i ll———
Controk | -
System | | lne |
Contral Controllér
| RSZ32 Bus *
Power Supply

Figure 1: Configuration for Smart Instruments™ (SM300)

3 Rohde & Schwarz

R&S Smart Instruments™ Family300 Basic Programming
Guide

3 Installing Instrument Drivers

1MA73

The instrument drivers can be obtained from the Rohde&Schwarz web site
(http://www.rohde-schwarz.de/drivers/overview.html). The site contains the
latest versions of the instrument drivers together with examples and
installations notes.

The following should be noted when installing and using the drivers: if a
VISA library has been installed on your PC, the instrument drivers are
embedded in its directory structure (e.g. C:\VXIPNP). If this is not the case,
the path to be used must be specified on installation and must also be set
in the development environments. The following document assumes that a
VISA library has been installed; this is a component of all National
Instruments development environments (e.g. LabWindows/CVI and
LabView) and of Agilent VEE.

The Rohde&Schwarz web site offers you a choice of three different drivers
for each instrument, but only two of the installation packages contain the
complete drivers for control.

VXI Plug&Play Instrument Driver:

This driver package installs the basic driver together with all the necessary
DLLs, LIBs and Include files, plus the Windows USB drivers, for operating
the instrument concerned by remote control.

LabView:

The driver package is configured in the same way as the VXlplug&play
instrument driver package, but in this case libraries for use within National
Instruments LabView are also included (see VXlplug&play Instrument
Driver).

LabWindows/CVI:

In contrast to the two packages mentioned above, this driver package
contains only the LabWindows/CVI function panel (fp) file, the C sources, a
ReadMe file and the Help files. However, to be able to use the instrument
driver, one of the two packages mentioned above must be installed first.

4 Rohde & Schwarz

R&S Smart Instruments™ Family300 Basic Programming
Guide

Directory structure:

After the instrument drivers are installed directory structures can differ,
depending whether or not the VISA library is installed on your PC.

With VISA Without VISA (standard installation directory)
= 1) WRIFNP = i) R5sl
H () SR I3 bin
) Khase I3 Include
|2 WisaCom H I b
B I WinhT & | rssifs

In an installation with the VISA library you find the same directories and
files in the sub-directory "WIinNT" as you would find when VISA is not
installed.

The following list of directories and files refers to the FS300 spectrum
analyzer.

Directory Contents

\bin Instrument driver DLL (e.g. rssifs_32.dll)

\lib Library files (e.g. rssifs.lib)
\bc (Borland C)
\msc (Microfsoft C)

\include Header files

- rssitype.h (type declarations for the Smart
Instruments™ for C)

- SiControl.h (type declarations for the basic
driver for C (internal to the driver))

- rssifs.h (FS300 type and function
declarations for C)

- rssifs.bas (FS300 type and function
declarations for Visual Basic)

\Kbase Empty by default

\rssifs (in this case for the FS300)

- license.pdf (license notices)

- readme.txt (release notes)

- rssifs.c (instrument driver sources)

- rssifs.chm (HTML based Help)

- rssifs.def (export description)

- rssifs.fp (LabWindows/CVI front panel file)
- RSSIFS.HLP (Windows Help)

1MA73 5 Rohde & Schwarz

R&S Smart Instruments™ Family300 Basic Programming
Guide

- Unlnst.isu (uninstall information)

\GWInNT LabView files
- rssifs.chm (HTML based Help)

- rssifs_xx.mnu (several LabView menu
files)

- rssifs.llb (LabView library)

4 Instrument Drivers

The Smart Instruments™ Family300 has instrument drivers which can be
used within Windows in all programming languages that can access DLLs.
The instrument drivers consist of different DLLs which carry out various
control tasks. The USB driver rssifs.sys serves as an interface for Windows
USB driver support. The SiControl DLL enables instrument-specific driver
components to access measurement modules with the aid of a common
interface. The instrument driver DLLs rssixx_32.dll (where xx stands for the
particular instrument, e.g. rssifs_32.dll for the FS300 spectrum analyzer)
provide the programmer with instrument-specific functions. The following
sections cover these in particular.

S Integrating Drivers into a Project

1MA73

The following section describes how to use instrument drivers in different
programming environments within Windows using an FS300 spectrum
analyzer as an example. Since development environments change in the
course of time, the integration sequence may also change with the advent
of a new version. The programming environment version is therefore
specified at the beginning of each section.

Visual C/C++

The following process refers to Microsoft Visual C++ 6.0.

To use the instrument driver in a Visual C++ project, you can proceed in
either of two ways:

o Use the LIB file as the interface for the DLL
o Import the DLL with the aid of LoadLibrary in runtime

The functions of the instrument driver are available to be called in either
method.

Using the LIB file

To use the LIB file as the interface for the DLL, the file must be integrated
into the project. Do this by following the menu sequence Project->Project

6 Rohde & Schwarz

1MA73

R&S Smart Instruments™ Family300 Basic Programming
Guide

Settings->Link "Object/Library Modules" and entering the desired LIB file,
e.g. rssifs.lib for the FS300 spectrum analyzer.

7] x|

‘Sethings For |Win32 Debug Ll t?[j++ e | Resouices I Browselhfo.l E5 EE

=
e Categony; IGeneraI :_I Reset |

DOutput fite Hame:
|DebuglibintCC. exe

DObjectdibrary rmodules:
|332.Iib oleaut32.lib uuidlib odbc32 b odboop32.lib resifzlib’

W Generate debuginfe [lgrare all default libraries
¥ Litk incrementally [Generate mapfile
" Enable profiling

Project Options:

kemel32 lib uzer32 ib gdi32 lib winzpool b comdlg32 lib
advapi3Z.lib ghell32 lib-ole32 lib oleaut32 lib uuid ib
odbe32lib adboep32.lib kemel32 b uzer32 b gdi32.|ib:J

0K I Cancel I

Figure 2: Adding the LIB file to the current project

The compiler must be notified of the path so that it can find the LIB file.

You therefore need to add a new search path for LIB files by using the
menu sequence Tools->Options..->Directory. As mentioned above (section
3 Installing Instrument Drivers) the search path to the files can vary
according to the type of installation.

Dptions I ,. x|

Carmpatibility I Buid Difectories | Saurce Contral Wur{q‘space% EI

Platform: Show directories for:
[win32 x| Library files -]
|Direcfcnries: 4“’: P O 4

Programmehhdic diztial Studio
C “Programmehhicrozoft Wisual Studlo"-."v"ESB"-.M FChLIE
C:hProgrammetM ational Instruments\M eszurementStudiot Y ChLib
CAWEIPHPYInK T iBSmze

(1] 8 I Cancel

Figure 3: Adding the search path for LIB files

In order to declare the functions and data types of the instrument driver
within your project, you must integrate the C header files into your project
and define the Include path if this has not already been done. Do this by
proceeding as described in the case of the LIB file, but in this case choose
"Include files".

7 Rohde & Schwarz

1MA73

R&S Smart Instruments™ Family300 Basic Programming
Guide

Options i
Editor I Tabz l Drebug I Enmpati.l.:nilit_l,l I Buld Directones | -: EE
Platfarm; Show directories far;
frwinaz 7| |include files -]
IQireu:turigas: T 4

C:M\Programmehbdicrosoft Wizual StudichCISNATLAMCLLDE :J

CAPROGRAMMENMICROSOFT WISUAL STUDIOAYMYPROJECTSAMEDF
CAMEIPHPAWINMNTSSICOMTROLASICOM TROLAUSBIOLIE
CAWVEIPMPAWINNTSSICONTROLASICONTROLAUSBIOLIBAING
C:AProgrammeht ational Inztrumentsii 2asurementStudiot Chinclude
C:\Programme’M ational InztrumentzibdeazurementStudiot W Chilnst

I PHEYwARH Ty nclude

(] I Cancel

Figure 4: Adding the search path for C header files

The general settings for your Visual C++ project have now been entered.

The header files must now be integrated into those of your modules which
are intended to call the driver functions. As usual in C and C++ this is done
by using #include.

In order to declare the functions and data types, the two header files rssixx.h
and rssitypes.h must be integrated (see also 9 Which Data Type to Use).

Example: #include <rssifs.h>

#include <rssitypes.h>

Importing the DLL in runtime

DLLs are integrated during the runtime of the program. Note that in this case
every function that is going to be used must be explicitly integrated, making
this a very time-consuming method. The next section shows in principle how
to do this, using the functions of rssifs_32.dll as an example.

The function rssifs_init is used to initialize an instrument. It is structured as
follows:

ViStatus _VI_FUNC rssifs_init (ViRsrc resourceName, ViBoolean IDQuery,
ViBoolean resetDevice,
ViPSession instrSession);

Information on data types can be found in file rssitypes.h.

Please note that the path to the header files must be specified in this case
also (see 3 Installing Instrument Drivers).

8 Rohde & Schwarz

R&S Smart Instruments™ Family300 Basic Programming
Guide

Example:
#include <rssitype.h>
#include <rssifs.h>

typedef ViStatus (RSSIFSINIT)(ViRsrc , ViBoolean ,ViBoolean ,
ViPSession);

HINSTANCE hinstance;

RSSIFSINIT* pFunction;

[* variables for function call */

ViRsrc resourceName = "USB::0xAAD::0x6::100015";
ViBoolean IDQuery = TRUE;

ViBoolean resetDevice = TRUE;

ViPSession instrSession= 0;

ViStatus Result =0;

int main(int argc, char*argv[]X
hinstance=::LoadLibrary("c:\WXIPNP\WinNT\\bin\\rssifs_32.dIl");
pFunction =(RSSIFSINIT*)::GetProcAddress(hlnstance, "rssifs_init");

/* function call */

Result=(*pFunction)(resourceName, IDQuery, resetDevice,
&instrSession);

return(0); }

Visual Basic

The following process refers to Microsoft Visual Basic 6.0.

Integrating the reference

To integrate the instrument drivers as reference in Visual Basic, carry out the
steps described below within your project. When you have created your new
project you can use the menu sequence Project->References... to integrate
the instrument drivers.

1MA73 9 Rohde & Schwarz

R&S Smart Instruments™ Family300 Basic Programming
Guide

& |oix|

Hg Bim tlep k= Leng
#im #c A® Long

Tim error_message Az Szeiag

1z aEczor < O Tien [T S x|

L]
srrer message = String(5s, O)

Fastah ercur meswage =id, iEceoi, WEEOr_mesduge
Ragbox “Xcrort * f error_message

FARiam_areat_quety wid, ec, REror_messsgm
12 ec > D Than EagBox "Deyics ectori 7 & arcor_message

Eid 1f

Frivate Sul bebiff Click()

i

Btk
mufwwn..,]!: wthairan .| 3 s | A $E | @sssrsins | o9 wouit . of Bt o] | sbeniss ([Aroo0 v S shewe | | 0 @BT e

Figure 5: Integrating the reference

Relerences - AM300_VB Arbitrary |Datasvbp

Asilabls Risferences:

[¥] Wisual Basic Far Applications
I¥] Wisual Basic rurtime objecks and procedures
{¥] wisual Basic objects and procedures

[w] DLE Automation)

[¥] SiControl Communication Library

[¥] R&s FS300 Spectrum Analyzer
[#! R&:s SM300 Signal Generator

trary Generator T
(| Helper COM Cormponent 1.0 Type Library - Help]
[C] 15 RADIUS Protocal 1.0 Type Library ﬂ '
] ABC OLE Automation 2.0 '

[_] AcrolEHelper 1.0 Tvpe Library
[&ctive DS Type Library
C!IF\EHVE_ Setun Control Library | i2

Location; E‘WﬁﬂPﬂPﬁ WinNTiBinrssiam_32,dil
Language: Standard

Figure 6: Selecting the reference

If the instrument drivers are not listed, use the Browse button to search for
the DLL in the installation directory where the instrument driver is located
(e.g. c:\VXIPnP\WinNT\bin\).

1MA73 10 Rohde & Schwarz

1MA73

R&S Smart Instruments™ Family300 Basic Programming
Guide

The following DLLs are available:
Instrument driver DLL name
FS300 and FS315 spectrum |rssifs_32.dll
analyzers
SM300 signal generator rssism_32.dll
AMB300 arbitrary/function rssiam_32.dll
generator
UP300 and UP350 audio rssiup_32.dll
analyzers

- Available References:

= 8l 2] x|
(ale | Suchen in; |._-) bin j &= =k -

v Visual Basic For Applications

Wl Visual Basic objects and procedures
W OLE Automation

Wl SicCentrol Communication Library

W RS FS300 Spectrum Analyzer

|| R&S 5M300 Signal Generator

Wl R&S AM300 Arbitrary Generator

[1 1A5 RADIUS Protocol 1.0 Type Library
[1ABC CLE Automation 2.0

[l AcrolEHelper 1.0 Type Library

[l Active DS Type Library

i'_llncti\-'e Setup Contral Library

4

[w] visual Basic runtime ohjects and procedures

] 145 Helper COM Component 1.0 Type Library

— WSHConkralizrLibrary

Language:

ﬂ Canicel | .f_s] nigpwx32,dil L:_s]Ni\.-'iPxi.dII .ﬂ rssiam_32.dll
‘-'-] Mivigaa.dl (2] iR e, i EEEE
OWSE, ., .}:J Miviase.dl i?‘_-f]Ni\.-'isaTuIip.dll .‘_’f‘J rssism_32.dll
.__::J MiviEnet. dll iﬁ] Nivillsb, dll &J rsupl_32.dll
ll [Zl riviEnatasd.di [M. di (%] ravirsib.di
e |2 Mivicapseze .l |3} rsfsp_az.dll 5] thdsz0me_z32.dl
a Help
| ' L
Dateiname: [rssifs_32.dl Dffren I
5 Diateityp; [Type Libraries [olb:™ tb:" di) = Abbrechen |
Location: CHWINNTSystem32iwshicon. dil
Standard
— | Select "Browse" to search for the DLL

Figure 7: Searching for the reference

National Instruments LabView

The following process refers to National Instruments LabView Express
7.0.

In order to integrate the Family300 drivers as standard drivers in
LabView, after installation of the LabView drivers it is necessary for the
complete directory (with VISA: c:\VXIpnp\GWIN\rssixx and without
VISA: myinstallationdrive:\rssifs\LabView) to be copied to LabView
directory "inst.lib". If LabView is already open, you must close it and re-
open it in order to use the instrument drivers.

The drivers are then available in the block diagram at Functions->Input-
>Instruments Drivers.

National Instruments LabWindows/CVI

The following process refers to National Instruments LabWindows/CVI
7.0.

After installation of the LabWindows/CVI driver the fp (front panel) file
can be included in the project. It is then available under "Instruments".

11 Rohde & Schwarz

1MA73

R&S Smart Instruments™ Family300 Basic Programming
Guide

WL FSI00_LabWindowsCV]_Basic_Measurement.ows - [FS300_LabWindowsCV1_Basic_Measurement.oir]
TR Yo dreste| fyrange: Gode Bokd Ry Jtnument

Esl= b Slele €9 BEEEE
T@_Fs:im_uwrmdomm_suic_mmd ﬁj r{'j M

143 Sowce Files

[l FS300_LabWinddkCV_B asic_Meas FS300 Basic Measurement
= i) Uses intextace Files

g = FAesowce Name Sl
= =3 Imtrument Files [USE- DRbAD 05 100018 | o Saples Rkirisd
B sitslp fel e ; ‘o ,
3 Libraies 41 Start Frequency [Hz) :
=t] Emoe Messages

=]

= RS FS300 Spectum Analyze:
B

=% Apphcation Funchion
B spoReadSpectium
= T Configuation Functions
1 4 Freguancy Setings
+ o Amphlude Setings
+i o Input Settings
s Marker Settings

+ @ Sweep Ssitings . .

54 Trigpor Seition i Right mouse-click

+ o Bandwidth Settings § : .

4@ Syrlem Sellings on the proiect file
i o AchoryStstus Funchions

+ 4 Dalas Furctions
+ Litiity Functions
clote

Figure 8: FS300 instrument in the project

Proceed as follows:
o Right mouse-click on the project file
o Select "Add file" -> in this case the fp file (e.g. select rssifs.fp for the

FS300 driver).

— 2ix]
Directony " ; : =
Histari: ll:.\‘-a'XIF'NF'\WmNT\Issﬂs _I
Suchen ir: ||.‘j rasifs :J 4 ~_

rssifs,Fp
Dateiname: |["fp Aedd
Dateityp: |Instrument [.fp] ll Ahbirechen

Selected Filed:

0K

Remove

Fiemave Al

I L

Figure 9: Adding the fp file to the project

12 Rohde & Schwarz

1MA73

R&S Smart Instruments™ Family300 Basic Programming
Guide

Agilent VEE
The following process refers to Agilent VEE Pro 7.0.

In order to use the driver under Agilent VEE, the instrument driver must
be created with the aid of the "Instrument Manager" function.

% Agilent ¥EE Pro

Fila Edit View Debug Flow Device Syskem |T,|'O_ Data Display ‘Window Help

Gl =2 §| B Il = EI = Instrument Manager,
Advanced IfQ

Pragram Explarar B hain Bus 1/G Manitor

i H

Unito = ;

Main Frarm k

TojFrarm Socket
TFrim DDE
Execute Program
Prl’nt.Sth_:e'n

Figure 10 Agilent VEE Instrument Manager

A new instrument can be created in the “Instrument->Add..“ submenu. The
interface type plays no part in this and you can press OK to confirm.

IRstrumentManager
~Instriment List ~Autn Discovery

2N ny Configuration (CADokarmente und Einstallunge Eind [nstruments |

Conmaure Drvers |

Settiros.. |

-Instrurment

Froperies.. |

| Add.

FErEYE |

~Create 0 Ohject——
OK Cancel
_ox | canel |

[Dred: i

FlucEpTay DTver |

Fanel EmvE |

4 i +] C:Drnr.mnentljrwe.-l

ok | gae | cancel| Print | Help |

Figure 11 Agilent VEE Add Interface/Device

The name and address of the instrument are specified in the next stage of
entering settings (the interface type does not need to be set). Choose
"Advanced" settings, to configure the instrument by selecting the Plug&play
Driver tab. For example in this case you would need to select the driver for
the FS300 (rssifs) from the "Plug&play Driver Name" list. You then need to

13 Rohde & Schwarz

R&S Smart Instruments™ Family300 Basic Programming
Guide

enter its resource string or the virtual instrument name (see 7 "Resource
String" and "Virtual Instrument Name").

General | Directiio Plug&play Driver IPa’net’Drive’r|

Plug&play Driver Mame: | r5sifs |

-Parameters ta initd call
Address (eig., GPIBOXZANETR) |Di0x0006:100209
¥ Petform Identification Query
v Perform Reset

-Diowniload drivers fram thie Weh
To add new drivers-to your systen
1. Downigad drivers frorn the following URL:
http hwoeay agilent comifindfinst_drivers
i |r1_5‘1aJ| drlvers io-’O:I&-’}{IPNPIWINNT.
3, Click Ok to exit this dialog hox
4. RE-enterthis dialog hoxto see the revized
driver list.

OK | C'ancel' Herpl

Figure 12 Agilent VEE Plug&play Driver

When the OK button is clicked the instrument is available in the Instrument

Manager.
Instrument Marager k2 E3 I
—Instrurment List ~Auto Discovery
Emhbedded Configuration (FS300_AgilentyEE_Bas A o L I
B8 GPIBT .
Configure Drivers I
Seftings... I
-Instrurment

Fropeties. ., |

Add. |

Remove |

“Create 0 Ohject——:
Directlio |

Flun&play Driver |

Fafeltryar I

Al | W] | | SR et er, |

o] | E:f.n.rel Cancell F'rintl Helpl

Figure 13 Agilent VEE Instrument Manager with the configured FS300

An FS300 object complete with all functions is then available on the Agilent
VEE user interface via "Create I/O Object -> Plug&play Driver".

1MA73 14 Rohde & Schwarz

R&S Smart Instruments™ Family300 Basic Programming
Guide

(=] ToiFtom FS300 =

= Douhle-Click to Add Function:=

Figure 14 Agilent VEE FS300 object

6 Using "FS300 Basic Measurement' for the First Time

1MA73

Now that the drivers are available under the individual development
environments, the following sections deal with a typical application that has
been programmed for all four development environments. Different
mechanisms for inputs and outputs are used, depending on the
development environment concerned.

What the application does

The application uses an FS300 to execute basic settings. The table shows
the instrument driver functions with which the setting or action concerned is
executed.

Setting/action

Instrument driver function

Opening the instrument

rssifs_init

Setting the reference level

rssifs_confRefLevel

Setting the start and stop frequency

rssifs_confStartStopFrq

Setting the resolution bandwidth and the
video bandwidth (RBW and VBW)

rssifs_configureBandwidth

Stopping the measurement

rssifs_actAbort

Setting the sweep points per trace

rssifs_confSweepPoints

Starting the measurement

rssifs_actSendTrg

Reading off a trace

rssifs_readCompleteSweepData

Closing the instrument

rssifs_close

Tips on debugging the application

Drivers in the Smart Instruments™ Family300 are supplied along with a
program called SiScan. This program enables developers to test the
instrument settings whilst program development is in progress. This saves
the effort involved in continually reading back the instrument settings within
the application.

15 Rohde & Schwarz

1MA73

R&S Smart Instruments™ Family300

Guide

Basic Programming

Logical Mame
AM300_1
Analyserl
Analyserz
FS30048
Productioni

‘]

Instrument

AM300 Arbitrary Generator
FS300 Spectrum Analyzer
FS300 Spectrum Analyzer
FS300 Spectrum Analyzer
FS300 Spectrurm Analyzer

Resource Descripbar

LISE: 1 0=0480: 1 0x0005:
LISE: i 0=08A0 0x0006::
USE:0=08A0: 0x0006:
LISE: i 0x08A0: 0x0006::
LISE: i 0x08A0; Dx0006:;

1100023

100196
100045
100744
100015

== =]

Connecked
YES
MO
MO
MO
[x L]

|

Figure 15: SiScan (Smart Instruments™ Scanning Tool)

The SiMonitor is a component of the SiScan program, and displays the
Register of the instrument that is to be controlled. Since polling the Register
affects the speed of the instrument, it would be better to display only those
that will also be used in the remote control application. More detailed
information on using the SiMonitor can be found in the associated Help file.

Selecting the
instrument with
the right-hand
mouse button

Abbildung 16 Starting SiMonitor

16

|| Registers Monitoring {':J |

FS300 Spectyum AnabFar ISR ALNALDIMANNG: 100196
| Add Logical Mame |

<& siScan =< |
Logical Mame Inskrument Resource Descriptor Connec.,
FS300_Speci_1 F5300-5Speckrum Analyzer USE: Ox0AAD: Dx0006; 100207 MO
e i : ; Apla . VES

Rohde & Schwarz

R&S Smart Instruments™ Family300 Basic Programming

Guide
[r1200: Arblien (connected) - Sivomtor 1ol
=W 7N
Name | Valye]Ll'ts | Progress Time | D
Serial Nurnbar 1 0,006 32-bit module serial number.
Binary =0
3
Firmwsare Yersion 1 0.006 Example: version 1.234
Majoriarsion = 3, Majorversion = 1,
Minorversion = 630 MinorYersion = 234
k
Hardware Version i 0.006 Example: version 1,234
MajorVersion = 0, Majoryersion =1,
Minorversion = 0 MinorYersion = 234
I-
Frequency Mode 1] 0.007 Returms conkrol of the frequency subsystem,
0..0W
1... FIXED
2... SWEEP
Walue SWEEP corresponds to state Sweep On,
Recognized channels: 0
Start Frequency 1.000000 Hz 0,006 Sweep start frequency.
Recognized channels: 0
Stop Frequency 250000.000000 Hz 0,006 Sweep stop fraquency,
R chaninels: 0
Sweep Time 0,001000 s 0,007 Time required to sweep from start to stop frequency.
Recognized channels: 0
Swieep Dirsction 0 0,007 Direction of the sweep,
0..up
1 ... DOMYN
Recognized channels: 0
i i 2]
For Help, press F1 — e 17

Figure 17: SiMonitor (part of the SiScan tool)

"Resource String'" and "Virtual Instrument Name"

When initializing an instrument, an object known as a "resource string" is
used for addressing (e.g. USB::0x0AAD::0x0006::100015 for an FS300
with the serial number 100015). A resource string comprises the following:

Resource string

USB::0x0AAD::0x0006::100015

Port

uUSB

Manufacturer (vendor)
identification code (VID)

0x0AAD (Rohde&Schwarz)

code (PID)

Instrument identification

0x0006 (FS300)

Serial number

100015 (serial number of the FS300)

1MA73 17

Rohde & Schwarz

1MA73

R&S Smart Instruments™ Family300 Basic Programming
Guide

When programming the Smart Instruments™ Family300 the instrument
identification code and the serial number change in accordance with the
instrument. The following table lists the instrument identification codes for
the whole Smart Instruments™ Family300:

Instrument | Instrument identification
code
AM300 0x0005
FS300 0x0006
FS315 0x0028
SM300 0x0007
UP300/350 0x0008

To simplify the task of exchanging instruments, such as in measurement
systems, you have the option to enter logical instrument names. These are
substitutes for resource strings in the form described above. The call to the
function rssixx_init changes as follows when logical instrument names are
in use:

Initialising the instrument

USB::0x0AAD::0x0006::100015 | rssifs_init("USB::0x0AAD::0x0006::100015",..)

Analyser1 rssifs_init("Analyser1”,..)

Logical instrument names are set with the aid of the SiScan program.

<} SiScan i] =) [] 1
Logical Mame Instrument Resource Descriptor Connected
AMS00_1 AM300 Arbikrary Gener., USE5 Ox0AAD:0x0005;: 100023 | MO
Analyserl FSi pECkrLm A almas b el D L QO 100196
Analyserz Fa3003pectrum Analy W 100045 NO
F3 Speckrum Analy Lename Logical Mame (100203 NO

. Spectrum Analy palete Logical Mame (100744 O
_Selecting the 30 Speckrum Ansly : 2 100015 | MO
instrument ith - yang signal Generati Registers Monitaring (100018 NO
the right-hand
mouse button
I
Figure 18 Adding a logical name via SiScan
. | e e ey s e e 1w
Analyserl FS300 Spectrum Analyaer USEDOx0&A0: 0x0006:: 100196 MO
Analyser? FS300 Spectrurm Analyzer USE:0x0AAD: :0x0006:: 100045 NO
F5 FS300 Spectrurn Analyzer USE:0x0AAD: 0x0008:: 100203 MO
R 1nstrument settings 1=
e Instrument settings I al =i
Sig_Ge
Logical Mame Type Resource Skrirg
|F5300Sped | USE:0X0AAD: X000 100198
oK I Cancel |
Figure 19 Entering the logical instrument name via SiScan
18 Rohde & Schwarz

R&S Smart Instruments™ Family300 Basic Programming
Guide

8 Where to Find Help on the Driver Functions

You can find online Help and sample demo programs for each driver.

Online Help

The Help files are installed along with the driver. Text-based Windows Help
files (e.g. rssifs.hlp) and HTML-based Help (e.g. rssifs.chm) are included in
the installation packages in each case.

Demo programs

To make it easier to start programming the instruments, demo programs
and application notes for the various instruments (e.g. FS300, SM300 and
AMS300) are available via the Rohde&Schwarz home page under the
keyword Smart Instruments™

http://www.rohde-schwarz.com/appnotes/overview.html

9 Which Data Type to Use

1MA73

Information on data types can be found in file rssitype.h and in the table
below. The data types in rssitype.h are based on the data types in the VISA
standard. The instrument drivers can thus also be used in VISA-based
applications. Please note in this respect that it is not permissible to
integrate the type definitions from the file rssitype.h.

VISA Data Type ANSI C Binding Visual Basic Description
Binding
ViUInt32 unsigned long Long A 32-bit unsigned integer
ViPUInt32 ViuInt32 + N/A The location of a 32-bit unsigned integer
ViAUInt32 ViuInt3z[] N/A An array of 32-bit unsigned integers
ViInt32 signed long Long A 32-bit signed integer
ViPInt32 ViInt3i2 + N/A The location of a 32-bit signed integer
ViAInt3i2 ViInt3z[] N/A An array of 32-bit signed integers
ViUlIntle unsigned short | Integer A 16-bit unsigned integer
ViPUInt1le ViUIntlse * N/A The location of a 16-bit unsigned integer
ViAUInt16 ViuIntils [] N/A An array of 16-bit unsigned integers
ViIntle signed short Integer A 16-bit signed integer
ViPIntle ViIntle * N/A T'he location of a 16-bit signed integer
ViAIntlé ViIntie[] N/A An array of 16-bit signed integers
ViuInts unsigned char Integer/ An S-bit unsigned integer
Byte
ViPUIntse ViUIntg + N/A I'he location of an 8-bit |||n|;._:nud integer
ViAUInts ViuIntse[] N/A An array of 8-bit unsigned integers
ViInte signed char Integer/ An B-bit signed integer
Byte

ViPInts ViInts + N/A T'he location of an 8-bit signed integer
ViAInts ViInts([] N/A An array of 8-bit signed integers
ViAddr void * Long A type that references another data type, in cases

where the other data type may vary depending

on a particular context
ViPAddr ViAddr * N/A The location of a ViAddr
ViARddr ViAddr (] N/A An array of type ViAddr

19 Rohde & Schwarz

R&S Smart Instruments™ Family300 Basic Programming

Guide

ViChar char Integer/ An S-bit integer representing an ASCII
Byte character

ViPChar ViChar * N/A The location of a Vichar

ViAChar ViChar (] N/A An array of type ViChar

ViByte unsigned char Integer/ | An S8-bit unsigned integer representing an

Byte extended ASCIH character

ViPByte ViByte * N/A I'he locaton of a ViByte

ViAByte ViByte[] N/A An array of type ViByte

ViBoolean ViUIntlée Integer A type for which there are two complementary
values: VI_TRUE and VI_FALSE

ViPBoolean ViBoolean * N/A The location of a ViBoolean

ViABoolean ViBoolean|[] N/A An array of type ViBoolean

ViReal32 float Single A 32-bit single-precision value

ViPReal32 ViReal32 + N/A The location of a 32-bit single-precision value

ViAReal32 ViReal3z [] N/A An array of 32-bit single-precision values

ViRealsd double Double A 64-bit double-precision value

ViPRealéd ViRealeq * N/A I'he location of a 64-bit double-precision value

ViAReal64d ViRealé4 [] N/A An array of 64-bit double-precision values

ViBuf ViPByte String The location of a block of data

ViPBuf ViPByte String TI'he location to store a block of data

ViABuf ViBuf [] N/A An array of type ViBuf

Vistring ViPChar String I'he location of a NULL-terminated ASCII
string

ViPString ViPChar String I'he location to store a NULL-terminated ASCII
string

ViAstring VisString(] N/A An array of type ViString

ViRsrc Vistring String A Vistring type that is further restricted to
adhere to the addressi immar for resources
as presented in Section 3 of VPP-4.3

ViPRsrc ViString String I'he location to store a ViRsrc

ViARsrc ViRsrc(] N/A An array of type ViRsrc

Vistatus ViInt32 Long A defined type that contains values
corresponding to VISA-defined Completion and
Error termination codes

ViPStatus Vistatus * N/A I'he location of a ViStatus

ViAStatus Vistatus|[] N/A An array of type ViStatus

Viversion ViUInt32 Long A defined type that contains a reference to all
information necessary for the architect to
represent the current version of a resource

ViPVersion Viversion * N/A I'he location of a ViVersion

ViAVersion ViVersion|] N/A An array of type ViVersion

Vicbject ViUInt32 Long I'he most fundamental VISA data type. It
contains atinbutes and can be closed when no
longer needed

ViPObject ViObject * N/A I'he location of a Viobject

ViAObject ViObject [] N/A An array of type ViObject

ViSession ViObject Long A defined type that contains a reference to all
information necessary for the architect to
manage a communication channel with a
resource

ViPSession ViSession * N/A I'he location of a ViSession

ViASession Visession|] N/A An array of type ViSession

ViAttr ViuInt32 Long A type that uniquely identifies an attnbute

ViConstString | const ViChar * | String A Vistring type that is guaranteed to not be

modified by any driver

20

Rohde & Schwarz

10 References

1MA73

R&S Smart Instruments™ Family300 Basic Programming
Guide

The following list contains a summary of the web sites and documents that
deal with programming Smart Instruments™.

FS300/315 Spectrum Analyzer Driver

LabWindows/CVI (http://www.rohde-
schwarz.com/driver/[FS300LabWindowsCVI.html)

LabVIEW (http://www.rohde-schwarz.com/driver/[FS300LabView.html)

VXlplug&play Instrument Driver for VEE, Visual Basic, Visual C++, Borland
C++ etc. (http://www.rohde-schwarz.com/driver/FS300VXIplugplay.html)

FS300 Remote Control Manual

AM300 Arbitrary Waveform Generator Driver

LabWindows/CVI (http://www.rohde-
schwarz.com/driver/AM300LabWindowsCVI.html)

LabVIEW (http://www.rohde-schwarz.com/driver/AM300LabView.html)

VXlplug&play Instrument Driver for VEE, Visual Basic, Visual C++, Borland
C++ etc. (http://www.rohde-schwarz.com/driver/AM300VXIplugplay.html)

SM300 Signal Generator Driver

LabWindows/CVI (http://www.rohde-
schwarz.com/driver/SM300LabWindowsCVI.html)

LabVIEW (http://www.rohde-schwarz.com/driver/SM300LabView.html)

VXlplug&play Instrument Driver for VEE, Visual Basic, Visual C++, Borland
C++ etc. (http://www.rohde-schwarz.com/driver/SM300VXIplugplay.html)

UP300/350 Audio Analyzer Driver

LabWindows/CVI (http://www.rohde-
schwarz.com/driver/UP300LabWindowsCVI.html)

LabVIEW (http://www.rohde-schwarz.com/driver/UP300LabView.html)

VXlplug&play Instrument Driver for VEE, Visual Basic, Visual C++, Borland
C++ etc. (http://www.rohde-schwarz.com/driver/UP300VXIplugplay.html)

Web sites

Smart Instruments™ home page (http://www.smartinstruments.de/)

Rohde&Schwarz home page (http://www.rohde-schwarz.de/)

Rohde&Schwarz application notes (http://www.rohde-
schwarz.com/appnotes/overview.html)

21 Rohde & Schwarz

R&S Smart Instruments™ Family300 Basic Programming
Guide

Rohde&Schwarz driver (http://www.rohde-
schwarz.com/drivers/overview.html)

Additional information

National Instruments VISA (http://www.ni.com/visa/)

11 Appendix: Contact our hotline

Should you have any questions or ideas concerning the instrument please
contact our hotline:

Phone . ++49-1805-124242
FAX : ++49-89-4129-13777

e-mail: CustomerSupport@rohde-schwarz.com

1MA73 22 Rohde & Schwarz

R&S Smart Instruments™ Family300 Basic Programming

Guide

12 Keywords

UsSB
USB driver

Instrument driver

VISA

PID

VID

1MA73

23

Universal Serial Bus (http://www.usb.org)

This refers to a Windows specific driver that makes
the basic communication with the instrument
available to the Windows operating system via the
USB.

The instrument driver forms the interface between
the USB driver and the controlling program. It
provides instrument-specific control functions to
the user/programmer.

This Virtual Instrument System Architecture (VISA)
specification defined by the VXI Plug-n-Play
Alliance is an important step in the direction of plug
and play interoperability between test and
measurement software, instruments and
controllers. The VISA framework standardizes the
I/O layer between instrument drivers and
controllers and supports GPIB, GPIB-VXI, VXI,
MXI, Ethernet TCP/IP and Serial bus controllers
and interfaces.

Product Identification (used in VISA resource
string)

Vendor Identification (used in VISA resource
string)

Rohde & Schwarz

