Определение характеристик спутниковых повышающих преобразователей

Указания по применению

Изделия:

- ı R&S[®]ZVA
- I R&S[®]FSW
- I R&S[®]NRP
- I R&S[®]SMB100A

Характеристики преобразователей частоты, используемых, например, в спутниковых ретрансляторах, требуют определения в части АЧХ и ФЧХ, а также группового времени задержки.

Другие параметры, такие как фазовый шум, точка компрессии 1 дБ, коэффициент преобразования, побочное излучение и интермодуляционные составляющие третьего порядка также представляют интерес с точки зрения качества традиционных аналоговых, а также современных цифровых схем модуляции, используемых в системах передачи радиосигналов.

В ряде случаев доступ к внутреннему гетеродину отсутствует.

В настоящих указаниях по применению рассматриваются методы, в которых анализатор цепей R&S[®]ZVA, один или два генератора сигналов R&S[®]SMB100A и анализатор сигналов R&S[®]FSW используются для точного измерения всех ключевых параметров преобразователей частоты со встроенным гетеродином. В качестве примера испытуемого устройства (ИУ) используется серийный спутниковый повышающий преобразователь.

Примечание:

С актуальной версией документа можно ознакомиться на нашей домашней странице http://www.rohde-schwarz.com/appnote/1MA224

/казания по примененик М. Назиф (M. Naseef) Э. Минихолд (R. Minihold 1 2015 – 1МАЭЗЛ 022

Содержание

1	Аннотация	4
2	Теоретические основы	6
2.1.1	Измерение группового времени задержки	6
2.1.2	Двухтональный метод с использованием анализатора ZVA	8
2.2	Гармоники и интермодуляционные составляющие	9
2.2.1	Гармонические сигналы	. 10
2.2.2	Интермодуляционные искажения, возникающие из-за влияния гармонических сигналов	10
2.2.3	Определение характеристик интермодуляционных искажений (ИМИ)	. 12
2.3	Измерения потерь преобразования	13
2.4	Фазовый шум	14
2.5	Плотность мощности шума	15
2.6	Однополосный шум	15
2.7	Точка компрессии	. 16
2.8	Нежелательное излучение	17
3	Установка для измерений характеристик спутниковых повышающих преобразователей с помощью ZVA	19
4	Измерение характеристик спутниковых повышающих преобразователей	22
4 4.1	Измерение характеристик спутниковых повышающих преобразователей Коррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки	22 22
4 4.1 4.2	Измерение характеристик спутниковых повышающих преобразователей Коррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки Измерение группового времени задержки спутниковых повышающих преобразователей прибором ZVA	22 22 24
4 4.1 4.2 4.2.1	Измерение характеристик спутниковых повышающих преобразователей Коррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки Измерение группового времени задержки спутниковых повышающих преобразователей прибором ZVA	22 22 24 24
 4.1 4.2 4.2.1 4.3 	Измерение характеристик спутниковых повышающих преобразователей Коррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки Измерение группового времени задержки спутниковых повышающих преобразователей прибором ZVA	22 22 24 24 26
 4.1 4.2 4.2.1 4.3 4.3.1 	Измерение характеристик спутниковых повышающих преобразователей Коррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки Измерение группового времени задержки спутниковых повышающих преобразователей прибором ZVA Настройки прибора Калибровка мощности	22 22 24 24 26 26
 4.1 4.2 4.2.1 4.3 4.3.1 4.3.2 	Измерение характеристик спутниковых повышающих преобразователей Коррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки Измерение группового времени задержки спутниковых повышающих преобразователей прибором ZVA	22 22 24 24 26 29
 4.1 4.2 4.2.1 4.3.1 4.3.2 4.4 	Измерение характеристик спутниковых повышающих преобразователей Коррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки Измерение группового времени задержки спутниковых повышающих преобразователей прибором ZVA	22 22 24 26 29 32
 4.1 4.2 4.2.1 4.3.1 4.3.2 4.4 4.5 	Измерение характеристик спутниковых повышающих преобразователей. Коррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки Измерение группового времени задержки спутниковых повышающих преобразователей прибором ZVA Настройки прибора Калибровка мощности Калибровка задержки в смесителе. Измерение группового времени задержки и результаты. Получение группового времени задержки с линейной, параболической и неравномерной зависимостью от частоты с помощью ПО MATLAB	22 22 24 26 26 29 32
 4.1 4.2 4.2.1 4.3.1 4.3.2 4.4 4.5 4.5.1 	Измерение характеристик спутниковых повышающих преобразователей Коррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки Измерение группового времени задержки спутниковых повышающих преобразователей прибором ZVA	22 22 24 26 29 32 33
 4.1 4.2.1 4.2.1 4.3.1 4.3.2 4.4 4.5 4.5.1 4.6 	Измерение характеристик спутниковых повышающих преобразователей Коррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки Измерение группового времени задержки спутниковых повышающих преобразователей прибором ZVA	22 22 24 26 26 29 32 33 34 38
 4.1 4.2 4.2.1 4.3.1 4.3.2 4.4 4.5 4.5.1 4.6 4.7 	Измерение характеристик спутниковых повышающих преобразователейКоррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки Измерение группового времени задержки спутниковых повышающих преобразователей прибором ZVA	22 22 24 26 26 26 26 32 33 34 38 39
 4.1 4.2 4.2.1 4.3.1 4.3.2 4.4 4.5 4.5.1 4.6 4.7 4.7.1 	Измерение характеристик спутниковых повышающих преобразователей. Коррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки. Измерение группового времени задержки спутниковых повышающих преобразователей прибором ZVA Настройки прибора Калибровка мощности Калибровка мощности Калибровка задержки в смесителе. Измерение группового времени задержки и результаты. Получение группового времени задержки и результаты. Код MATLAB для расчета группового времени задержки и построения соответствующих графиков. Измерение коэффициента преобразования Мамерение интермодуляционных искажений с помощью ZVA. Результаты измерения	22 22 24 26 26 26 29 32 33 34 38 39 4 1

4.9	Измерительная установка для измерений интермодуляционных искаже помощью анализатора спектра и сигналов FSW и двух сигнальных генераторов SMB	ений с 45
4.10	Измерение характеристик фазового шума с помощью прибора FSW	47
4.11	Измерение побочного излучения	50
5	Библиография	54
6	Информация для заказа	55

1 Аннотация

Преобразователи частоты, в которых используется один или несколько смесителей, лежат в основе всех систем связи или систем измерения дальности и применяются для понижающего преобразования ВЧ-сигнала до ПЧ или частоты модулирующего сигнала или повышающего преобразования модулирующего или ПЧ-сигнала до ВЧ. В их состав входят фильтры, как правило, селективные полосовые фильтры, позволяющие избавиться от сильных сигналов соседних каналов, исключить проникание сигнала гетеродина, а также устранить отклики по зеркальному каналу и другие продукты смешивания. Чтобы не вызывать ухудшения качества передачи системы связи, эти фильтры должны обладать хорошо контролируемыми АЧХ и ФЧХ, а также характеристиками группового времени задержки (ГВЗ). Линейность ФЧХ и характеристики группового времени задержки играют особо важную роль с точки зрения минимизации коэффициентов битовых ошибок систем связи и обеспечения высокого различения (разрешения) отдельных целей для радиолокационных систем (РЛС). Ключевыми параметрами при определении характеристик преобразователя частоты являются относительное и/или абсолютное групповое время задержки. Помимо интермодуляционных составляющих третьего порядка при проведении измерений также необходимо учитывать такие параметры, как фазовый шум, точка компрессии 1 дБ, коэффициент преобразования и побочное излучение.

Относительные фазовая и групповая задержки могут быть измерены с помощью так называемого опорного или "эталонного" смесителя при наличии доступа к гетеродину. Тем не менее, из-за возрастающей интеграции и тенденций к уменьшению габаритов в ряде случаев отсутствует доступ как к гетеродину (LO), так и к общему сигналу опорной частоты.

В настоящих указаниях по применению рассматривается новая методика измерений с использованием преобразователей частоты со встроенным гетеродином и без непосредственного доступа к общему опорному сигналу. Основой этой методики является подача двухтонального сигнала на испытуемое устройство (ИУ).

Сначала рассмотрим измерения, проводимые с помощью векторного анализатора цепей R&S[®]ZVA. Путем измерения разности фаз двух сигналов на входе и выходе анализатор рассчитывает фазовую передаточную функцию (ФЧХ) и затем различные составляющие группового времени задержки ИУ.

Показано, что точность измерения не зависит от стабильности частоты встроенного гетеродина ИУ при условии, что девиация находится в пределах полосы измерения приемника анализатора.

Описание контрольно-измерительных процедур включает измерения группового времени задержки, интермодуляционных составляющих третьего порядка, точки компрессии 1 дБ и коэффициента преобразования.

Кроме того, в настоящих указаниях по применению представлено подробное описание контрольно-измерительных процедур для интермодуляционных составляющих третьего порядка, фазового шума и побочного излучения с использованием одного или двух приборов R&S[®]SMB в качестве источника сигнала возбуждения и анализатора спектра и сигналов FSW.

Серийно выпускаемый спутниковый повышающий преобразователь компании Work Місгоwave типа SCU-C70/140-50, выполняющий повышающее преобразование ПЧсигнала с частотой 70/140 МГц до С-диапазона 5,85 – 6,45 ГГц, используется в настоящих указаниях по применению в качестве примера ИУ для представленных измерений. Все измерения проводятся при выходной частоте 5,98 ГГц и коэффициенте преобразования 15 дБ.

Рисунок 1-1 – Определение характеристик спутникового повышающего преобразователя С-диапазона от компании Work Micowave, представленного в качестве испытуемого устройства, с помощью векторного анализатора цепей R&S[®]ZVA40

В настоящих указаниях по применению используются следующие сокращения для контрольно-измерительного оборудования компании Rohde & Schwarz:

Векторный анализатор цепей R&S[®]ZVA называется ZVA Анализатор спектра и сигналов R&S[®]FSW называется FSW Генератор сигналов R&S[®]SMB100A называется SMB Трехканальный датчик мощности R&S[®]NRP-Z21/Z11 называется NRP-Z21/Z11

2 Теоретические основы

2.1.1 Измерение группового времени задержки

Измерения группового времени задержки (ГВЗ) основаны на фазовых измерениях. Процедура измерения заключается в определении группового времени задержки τ_{gr} как отрицательной производной фазы ϕ (в градусах) по частоте *f*:

$$\tau_{\rm gr} = -\frac{1}{360^0} \cdot \frac{d\varphi}{df} \tag{1}$$

По практическим соображениям векторные анализаторы цепей выполняют измерение разностного отношения для параметра S₂₁ вместо вычисления производной, что позволяет получить хорошее приближение к искомому групповому времени задержки τ_{gr}, если закон изменения фазы φ достаточно линеен в наблюдаемом частотном диапазоне Δ*f*, называемом *апертурой*.

Рисунок 2-1 – Определение сдвига фазы $\Delta \phi = \phi 2 - \phi 1$ и апертуры $\Delta f = f 2 - f 1$

На рисунке 2-1 проиллюстрированы понятия Δφ= φ₂-φ₁ и Δf=f₂-f₁ для линейно убывающей ФЧХ, например, линии задержки.

Для устройств, не выполняющих преобразование частоты, таких как фильтры или усилители, измерения параметра S_{21} на двух различных частотах могут выполняться последовательно.

В случае устройств преобразования частоты, таких как смесители, разность фаз входного и выходного сигналов не может быть измерена напрямую вследствие различия частотных диапазонов. Кроме того, на фазу влияет не только само устройство преобразования, но и фаза гетеродина, используемого для выполнения преобразования.

Поэтому при измерениях фазы и групповой задержки смесителей и преобразователей используют так называемый опорный или "эталонный" смеситель. Опорный смеситель использует тот же гетеродин, что и испытуемое устройство, для повторного преобразования ВЧ- или ПЧ-сигнала с целью получения одинаковых частот в опорном и измерительном приемниках векторного анализатора цепей (ВАЦ).

Эта методика применяется для снижения влияния нестабильности фазы гетеродина.

Рисунок 2-2 – Блок-схема стандартной испытательной установки для измерения фазы и групповой задержки смесителя/преобразователя с помощью опорного смесителя

Данное измерение позволяет получить фазу и групповую задержку относительно эталонного смесителя, параметры которого были измерены для калибровки вместо испытуемого смесителя (ИСм). Результаты измерения параметров ИСм обнаруживают разницу в фазе и групповой задержке относительно этого эталонного смесителя. Как правило, эталонный смеситель считается идеальным.

В общем случае ИСм, такой как спутниковый повышающий или понижающий преобразователь, оснащен одним или несколькими внутренними фильтрами в сигнальном тракте, обладающими значительным групповым временем задержки. Таким образом, можно предположить, что:

ГВЗ (ИСм) >> ГВЗ (опорный смеситель)

Если гетеродин испытуемого устройства недоступен, проведение измерений ГВЗ с использованием опорного смесителя невозможно. В качестве альтернативы сигналу возбуждения могут быть использованы АМ- и ЧМ-сигналы. Другие методы заключаются в попытке воссоздания сигнала гетеродина. Они подразумевают использование внешнего генератора сигналов в качестве гетеродина для опорного смесителя и направлены на проведение настройки частоты генератора, которая выполняется до тех пор, пока не будет минимизирован дрейф фазы на ПЧ с течением времени.

Эти методы накладывают ограничения в части динамического диапазона, точности измерения и пропускной способности. Кроме того, внутренние гетеродины ИУ зачастую не обладают высокой стабильностью, что усложняют задачу воссоздания или "отслеживания" сигнала недоступного гетеродина с помощью внешнего генератора.

Анализатор R&S ZVA позволяет использовать другой подход, помогающий избежать проблем, которые возникают при задействовании рассмотренных выше традиционных методик.

2.1.2 Двухтональный метод с использованием анализатора ZVA

Измерение группового времени задержки преобразователей при отсутствии доступа к внутреннему гетеродину и общему сигналу опорной частоты предъявляет определенные требования к испытательному оборудованию. В общем случае использование внутреннего гетеродина приводит к появлению дрейфа фазы во времени. Как следствие, неизвестная фаза оказывает влияние на групповое время задержки. Опция ZVA-K9 представляет собой простое и надежное решение, позволяющее преодолеть эту проблему: с помощью уникального двойного цифрового входного каскада прибора ZVA/ZVT можно измерить разность фаз двухтонального сигнала на входе и выходе ИУ, что обеспечивает возможность непосредственного расчета группового времени задержки. Поскольку дрейф сигнала внутреннего гетеродина или фазовый шум влияют на обе несущих, он с легкостью может быть скомпенсирован. Таким образом, дрейф внутреннего гетеродина может достигать значения, равного выбранной ширине полосы пропускания на ПЧ прибора ZVA, как правило, 1 кГц или 10 кГц.

В этом новом методе используется двухтональный сигнал, поступающий на вход ИУ и доступный при установленной опции встроенного гетеродина ZVA-K9 для измерения ГВЗ в смесителе. Прибор ZVA позволяет измерять разность фаз двух несущих на входе и выходе ИУ.

Рисунок 2-3 – Разность фаз двухтонального сигнала на входе и выходе устройства преобразования частоты

В этом случае групповое время задержки рассчитывается следующим образом:

$$τgr = -\frac{1}{360^0} \cdot \frac{\Delta \varphi}{\Delta f}$$
 где $\Delta \varphi = \varphi_2 - \varphi_1$
(3)

Напомним, что разность частот Δf двух несущих называется апертурой.

Для измерения разности фаз двух несущих в приборе ZVA представлены два цифровых приемника (для каждого канала аналогового приемника), обеспечивающих возможность одновременного измерения обоих сигналов.

Рисунок 2-4 – Блок-схема с двумя цифровыми приемниками для одного канала аналогового приемника прибора ZVA

Этот метод также работает в случае ИУ с преобразованием частоты, поскольку нестабильность фазы и частоты гетеродина ИУ при расчете Дф компенсируется.

Рисунок 2-5 – Визуализация переноса фазы/частоты в устройстве преобразования частоты

$$\Delta \varphi = (\varphi_{2out} + \varphi_{LO} - \varphi_{1out} - \varphi_{LO}) - (\varphi_{2in} - \varphi_{1in})$$
(4)

Помимо группового времени задержки прибор ZVA позволяет рассчитывать относительную фазу ИУ путем интегрирования ГВЗ, а также дисперсию путем дифференцирования ГВЗ.

Использование смесителя с известным групповым временем задержки для калибровки позволяет получить абсолютное групповое время задержки. Если требуется определить только относительное групповое время задержки, можно использовать для калибровки любой эталонный смеситель.

2.2 Гармоники и интермодуляционные составляющие

Появление гармоник и интермодуляционных искажений обусловлено нелинейностью электронных цепей. В главе 2.2.1 приводится математическое обоснование возникновения гармонических сигналов вследствие влияния нелинейных элементов, а в главе 2.2.2 рассмотрены вопросы интермодуляции.

2.2.1 Гармонические сигналы

В этом разделе рассматриваются основные уравнения для гармонических сигналов, полученных в рамках сценария с двухтональным сигналом.

В случае, когда однотональный немодулированный сигнал (СW-сигнал) поступает в нелинейный элемент, дополнительные сигналы, так называемые гармоники, будут возникать на частотах, *n*-кратных частоте исходного сигнала, где *n* – порядок гармоники.

Любой нелинейный элемент может быть описан рядом Тейлора:

$$P(s) = a_0 + a_1 \cdot s + a_2 \cdot s^2 + a_3 \cdot s^3 + \cdots$$
(5)

где *P*(*s*) – передаточная функция элемента, а *s* – входной сигнал. Не будем углубляться в описание коэффициентов *a_n*, а рассмотрим степени *s*.

При условии, что во входном СW-сигнале отсутствует постоянная составляющая, общее уравнение сигнала *s* как функции от времени *t* имеет следующий вид:

$$s(t) = B \cdot \cos(2\pi \cdot f \cdot t + \varphi)$$
(6)

Использование теоремы сложения для косинусоидной функции позволяет увидеть, что член второй степени в уравнении (5) порождает сигнал, частота которого равна удвоенной частоте исходного сигнала (вторая гармоника), член третьей степени порождает третью гармонику, и т.д.

Для получения подробной информации обратитесь к указаниям по применению Rohde & Schwarz Application Note 1EF78.

2.2.2 Интермодуляционные искажения, возникающие из-за влияния гармонических сигналов

Очевидно, что гармоники однотонального сигнала находятся вне рабочего диапазона приложения, поскольку возникают на частотах, кратных частоте исходного сигнала. Если к входному сигналу добавляется еще один тональный сигнал с небольшим смещением частоты относительно исходного сигнала, результирующий выходной сигнал будет выглядеть иначе. В отличие от сценария с однотональным сигналом, уравнение сигнала примет следующий вид:

$$s(t) = B_1 \cdot \cos(2\pi \cdot f_1 \cdot t + \varphi_1) + B_2 \cdot \cos(2\pi \cdot f_2 \cdot t + \varphi_2).$$
(7)

Поскольку преобладающие интермодуляционные составляющие, как правило, имеют третий порядок, в приведенных ниже уравнениях учитываются только они. Вычисление членов третьей степени (ответственных за интермодуляционные составляющие и гармоники третьего порядка) ряда Тейлора (уравнение 1) с двухтональным входным сигналом из уравнения 3 позволяет получить следующие результаты:

$$s^{3}(t) = B_{1}^{3} \cdot \cos^{3}(2\pi \cdot f_{1} \cdot t + \varphi_{1}) +$$

$$B_{2}^{3} \cdot \cos^{3}(2\pi \cdot f_{2} \cdot t + \varphi_{2}) +$$

$$3 \cdot B_{1}^{2} \cdot B_{2} \cdot \cos^{2}(2\pi \cdot f_{1} \cdot t + \varphi_{1}) \cdot \cos(2\pi \cdot f_{2} \cdot t + \varphi_{2}) +$$

$$3 \cdot B_{1} \cdot B_{2}^{2} \cdot \cos(2\pi \cdot f_{1} \cdot t + \varphi_{1}) \cdot \cos^{2}(2\pi \cdot f_{2} \cdot t + \varphi_{2})$$
(8)

В первых двух строках описываются гармоники третьего порядка для каждого из входных тональных сигналов (члены cos³), тогда как в строках 3 и 4 представлены интермодуляционные составляющие третьего порядка (смешанные члены). С помощью теоремы сложения (для тригонометрических функций) на основании

вышеприведенного уравнения могут быть получены выражения для интермодуляционных составляющих третьего порядка (TOI):

$$f_{\text{TOI1}} = 2 \cdot f_1 - f_2 \tag{9}$$

$$f_{\text{TOI2}} = 2 \cdot f_2 - f_1$$

Гармоники третьего порядка (3* f_1 и 3* f_2) отдельных входных тональных сигналов могут быть с легкостью подавлены с помощью ФНЧ, тогда как интермодуляционные составляющие третьего порядка зачастую более критичны для приложения. В ряде случаев результирующие частоты находятся в диапазоне отдельно взятого приложения и, как следствие, создают помехи полезному сигналу. Кроме того, при условии, что B1 = B2, т.е. оба тональных сигнала имеют одинаковый уровень, амплитуда интермодуляционных составляющих превышает амплитуду гармоник в три раза (уравнение 8); т.е. уровень гармоник третьего порядка отдельных тональных сигналов на 9,54 дБ ниже уровня интермодуляционных составляющих третьего порядка.

2.2.3 Определение характеристик интермодуляционных искажений (ИМИ)

Интермодуляционные искажения могут быть визуализированы несколькими способами, при этом неизменность методики измерений обеспечивает возможность преобразования результатов.

Метод измерения, позволяющий определить характеристики ИМИ испытуемого устройства (ИУ), называется сценарием с двухтональным сигналом. Два тональных СW-сигнала, имеющих одинаковый уровень мощности (P_{InTone}) и разнесенных по частоте на заданное значение (Δf), подаются на вход ИУ (см. рисунок 2-6). На выходной стороне уровень мощности исходных тональных сигналов может измениться и стать равным P_{Tone} . Интермодуляционные составляющие могут быть измерены для получения абсолютного значения мощности или значения мощности относительно P_{Tone} , именуемого P_{Δ} . На практике параметр P_{Δ} также называется свободным от интермодуляционные составляющие моемт. Очевидно, что интермодуляционные составляющие третьего порядка имеют то же разнесение по частоте от верхних и нижних тонов, что и два исходных тональных сигнала (Δf).

Рисунок 2-6 – Сценарий с двухтональным сигналом, используемый для определения ИМИ

Помимо этого, может быть рассчитана так называемая *точка пересечения по* интермодуляционным составляющим третьего порядка (IP3). Это теоретическая точка, в которой уровень интермодуляционных составляющих на выходе ИУ становится равным уровню исходных тональных сигналов на выходе ИУ. Значение IP3 может быть получено в логарифмическом масштабе (все значения представлены в дБмВт или дБ) следующим образом:

$$IP3 = P_{Tone} + P_{\Delta} / 2. \tag{10}$$

При известной точке IP3 можно с легкостью рассчитать интермодуляционные составляющие третьего порядка для любых более низких уровней мощности *Р*_{топе}:

$$P_{IM3} = IP3 - 3(IP3 - P_{Tone})$$
, где $P_{Tone} << IP3$ (11)

На рисунке 2-7 приведен график зависимости, описанной в уравнении 10. Здесь показаны теоретические прямые основной гармоники и гармоники третьего порядка на выходе ИУ с коэффициентом усиления 0 дБ.

Рисунок 2-7 – Графическое представление уравнения 10

2.3 Измерения потерь преобразования

Потери преобразования (или коэффициент преобразования) – это мера изменения мощности при выполнении смесителем преобразования ВЧ до ПЧ, задаваемая в виде отношения уровней *Р*_{вых} (ПЧ) и *Р*_{вх} (ВЧ) и выражаемая в дБ.

Рисунок 2-8 – Определение потерь/коэффициента преобразования устройства

Возможно проведение измерений параметров преобразования в виде функции от частоты и амплитуды. Наиболее важными измерениями параметров преобразования смесителя являются:

 Измерение потерь преобразования / коэффициента преобразования в заданном диапазоне частот.

- Измерение динамического диапазона / компрессии смесителя в случае входного ВЧ-сигнала.
- Измерение потерь преобразования / коэффициента преобразования в виде функции от уровня мощности гетеродина.

2.4 Фазовый шум

Фазовый шум может быть рассмотрен в качестве случайной фазовой модуляции в окрестности "идеальной" несущей. Идеальная несущая описывается следующим уравнением:

Этот тип фазовой модуляции (ФМ) немного "расширяет" несущую в области частотного спектра.

Для определения фазового шума обычно используются два следующих параметра:

- Плотность мощности шума и
- и Однополосный шум (шум SSB)

2.5 Плотность мощности шума

Одной из характеристик фазового шума является односторонняя плотность мощности фазовых флуктуаций $\Delta \phi_{rms}$ относительно полосы 1 Гц:

$$S_{\Delta\phi}(f) = \frac{\Delta\phi^2 r_{ms}}{1} \left[\frac{rad^2}{Hz} \right]$$
(13)

2.6 Однополосный шум

На практике однополосный (SSB) фазовый шум *L*, как правило, используется для описания характеристик фазового шума генератора и определяется как отношение мощности шума в одной боковой полосе (измеренной в полосе 1 Гц) *Pssb* к мощности сигнала *P*_{carrier} на частоте отстройки, смещенной на *f*_m относительно несущей.

$$L(f_m) = \frac{P_{SSB}[1Hz]}{P_{Carrier}}$$
(14)

Если боковые полосы модуляции очень малы из-за влияния шума, т.е. отклонение фазы значительно меньше 1 рад, выражение для однополосного фазового шума может быть получено из плотности мощности шума:

$$L(f_m) = \frac{1}{2} S_{\Delta\phi}(f_m) \tag{15}$$

Однополосный фазовый шум, как правило, задается в логарифмическом масштабе [дБн/Гц]:

$$L_c(f_m) = 10\log\left(L(f_m)\right) \tag{16}$$

2.7 Точка компрессии

Выходная мощность усилителя, как правило, имеет линейную зависимость от входной мощности (рисунок 2-9): коэффициент усиления, т.е. отношение выходной мощности к входной, остается неизменным на всем линейном участке.

Входная мощность, дБмВт

Рисунок 2-9 – Определение точки компрессии 1 дБ на входе и выходе усилителя

Если уровень входного сигнала со временем превысит некоторую точку, зависимость выходной мощности от входной перестанет быть линейной. Как правило, это отклонение увеличивается по мере приближения выходного уровня к максимальной выходной мощности усилителя: проявляется эффект компрессии усилителя. Точка компрессии 1 дБ определяет выходную мощность усилителя, на которой уровень выходного сигнала на 1 дБ ниже ожидаемого/требуемого уровня выходного сигнала.

Альтернативное представление характеристик компрессии усилителя показано на рисунке 2-10, где приведен график зависимости усиления от выходной мощности. Менее распространен график зависимости усиления от входного уровня.

Выходная мощность, дБмВт

Рисунок 2-10 – График зависимости коэффициента усиления от выходной мощности и точка компрессии 1 дБ на выходе усилителя

Нахождение в области линейного усиления, т.е. усиления, наблюдаемого при достаточно низком уровне сигнала возбуждения, обеспечивает получение ожидаемого / требуемого уровня выходного сигнала. Разница между ожидаемым и наблюдаемым уровнями выходного сигнала объясняется непропорциональным увеличением уровня гармоник выходного сигнала при возрастании уровня входного сигнала.

Гармоники не всегда являются единственной причиной такого несоответствия, однако во избежание негативного влияния, оказываемого высокими уровнями гармоник сигнала на результаты измерения характеристик требуемых компонентов, необходимо проведение выборочного измерения выходной мощности.

2.8 Нежелательное излучение

Идеальный передатчик излучает сигнал только на рабочей частоте и нигде больше. Однако на практике все передатчики излучают помехи, известные как "нежелательное излучение" и присутствующие в выходном спектре. В рамках настоящих указаний по применению можно утверждать, что нежелательное излучение, как правило, измеряется на выходном ВЧ-порте.

"Побочным излучением" может считаться любой генерируемый оборудованием сигнал, выходящий за пределы рабочего (допустимого) диапазона этого оборудования.

Появление побочного излучения вызвано нежелательными побочными эффектами, такими как эмиссия гармонических составляющих, паразитное излучение, а также наличие интермодуляционных составляющих и составляющих преобразования частоты, за исключением так называемого внеполосного излучения.

"Внеполосное излучение" описывает излучение мешающих сигналов в области, непосредственно прилегающей к необходимой полосе канала, но без перекрытия области, которая отведена под побочные излучения.

Появление внеполосного излучения вызвано влиянием процесса модуляции и нелинейностью компонентов системы.

Области внеполосного и побочного излучения

Частота излучения

Рисунок 2-11 – Области внеполосного и побочного излучения в составе нежелательного излучения

В пределах полосы нежелательного излучения часто задается спектральная маска излучения, используемая при проведении измерений.

Международный союз электросвязи (МСЭ, ITU) определяет область внеполосного излучения (*OoB*) в зависимости от необходимой полосы (*B_n*): меньше нижнего порогового значения (*B_L*), между *B_L* и верхним пороговым значением (*B_u*) или больше *B_u* см. таблицу 2-1

Таблица 2-1 – Начало и конец области ОоВ согласно ITU-R-REC-SM.1541-4 и ITU-R-REC-SM.1539-1

Тип излучения	Необходимая полоса В _N	Смещение (±) относительно центра необходимой полосы для начала области ОоВ	Разнесение по частоте между центральной частотой и границей области побочного излучения
Узкополосное	< <i>B</i> _L (см. Примечание 1)	$0,5 B_N$	$2,5 B_L$
Нормальное	$B_L - B_U$	$0,5 B_N$	2,5 B_N
Широкополосное	$> B_U$	$0,5 B_N$	$B_U + (1,5 B_N)$

Начало и конец области ОоВ

Примечание 1 – Если $B_N < B_L$, рекомендуется пренебречь нежелательными помехами при значениях разнесения по частоте, находящихся в диапазоне 0,5 B_N – 0,5 B_L .

Примечание 2 – Значения *B_L* и *B_U* приводятся в Рекомендациях ITU-R SM.1539.

3 Установка для измерений характеристик спутниковых повышающих преобразователей с помощью ZVA

Для проведения прецизионных измерений группового времени задержки и интермодуляционных искажений с использованием опции R&S ZVA-K9, поддерживающей двухтональный метод, необходимо сгенерировать двухтональный сигнал с точным и постоянным смещением частоты. Прибор ZVA в 4-х портовой конфигурации позволяет сформировать такой сигнал с помощью двух источников. Два сигнала источника объединяются посредством внешнего сумматора или одного из внутренних блоков сопряжения прибора ZVA, используемого в качестве сумматора.

Для этого организуйте следующие соединения:

- Src out (порт 1) -> Meas out (порт 2)
- Порт 2 -> Src in (порт 1)

В составе опции ZVA-B9 компания Rohde & Schwarz предлагает набор кабелей для различных моделей прибора ZVA. С их помощью двухтональный сигнал подают на вход ИУ через опорный приемник порта 1. Использование такой схемы измерений рекомендовано для всех моделей ZVA, если значения ПЧ и ВЧ превышают 700 МГц.

Рисунок 3-1 – Измерительная установка, в которой используются принадлежности ZVA-B9

При использовании векторного анализатора цепей (ВАЦ) типа ZVA8, ZVA24, ZVA40 или ZVA50 на более низких частотах, например для измерений характеристик спутниковых повышающих преобразователей, входная ПЧ которых равна 70 МГц или 140 МГц, наличие ослабления во внутреннем блоке сопряжения приводит к

повышению уровня шума на кривой. Чтобы избежать этого, воспользуйтесь представленным ниже вариантом. Для повышения точности на обоих портах ВАЦ рекомендуется использовать хорошо согласованные 6 дБ аттенюаторы, подключенные непосредственно в плоскости измерения.

Испытуемый смеситель/преобразователь

Рисунок 3-2 – Измерение характеристик преобразователя с помощью прибора ZVA

Двухтональный сигнал генерируется с помощью сигналов источников с выходных портов 3 и 1 прибора ZVA, объединенных в сумматоре мощности (например, резистивном делителе мощности, 4901.19.A, Huber+Suhner). Сигнал с выходного порта сумматора поступает на вход сигнала источника "source in" порта 1. Этот порт соединен с ВЧ-входом испытуемого повышающего преобразователя посредством 6 дБ аттенюатора. Сигнал с преобразованной вверх частотой поступает на порт 2 прибора ZVA через другой 6 дБ аттенюатор. Эти два аттенюатора необходимы для улучшения параметров согласования в рассматриваемой измерительной установке.

По возможности рекомендуется синхронизировать испытуемый преобразователь с измерительным прибором, например, ZVA, посредством общего опорного сигнала, что позволяет предотвратить возникновение смещений частоты вследствие различий в параметрах временной развертки. Для обеспечения синхронизации рекомендуется организовать соединение между выходом опорного сигнала "Ref Out" испытуемого преобразователя и входом опорного сигнала "Ref In" прибора ZVA. Использование другого способа, который заключается в синхронизации испытуемого преобразователя с внешним генератором опорных сигналов, может привести к проблемам, связанным с неэффективностью схемного решения.

В случае испытуемых преобразователей, у которых **отсутствует** доступ к внутреннему генератору развертки (опорной частоте), необходимо учитывать дрейф и возможное постоянное смещение частоты сигнала внутреннего гетеродина. С помощью опции ZVA-K9, главным образом предназначенной для работы с такими устройствами, может быть получено надежное решение для устранения проблем, связанных с дрейфом параметров гетеродина. Постоянное смещение частоты сигнала внутреннего гетеродина относительно опорной частоты контрольно-измерительного оборудования может быть с легкостью определено и учтено: простое скалярное измерение параметров преобразования частоты при фиксированной ВЧ и ПЧ, качающейся в частотном диапазоне ожидаемого выходного ПЧ-сигнала ИУ, позволяет получить непосредственное значение смещения сигнала гетеродина. Для получения информации о методах измерения и коррекции смещения см. главу 4.1.

Предварительным условием для проведения следующих измерений является постоянство этого смещения в пределах используемой полосы измерения, например, 1 кГц.

Измерительная установка, показанная на рисунке 3-2, может быть использована для проведения измерений группового времени задержки, потерь преобразования, интермодуляционных искажений и точки компрессии 1 дБ.

4 Измерение характеристик спутниковых повышающих преобразователей

4.1 Коррекция смещения частоты гетеродина для испытуемых преобразователей частоты, не имеющих доступа к генератору развертки

Можно пропустить эту главу, если испытуемые преобразователи оснащены выходом опорной частоты!

Как упоминалось выше, опция ZVA-K9 является единственным в своем роде решением для проведения измерений характеристик встроенных гетеродинов и обеспечивает надежность измерений даже при значительном уровне дрейфа частоты внутреннего гетеродина (который может иметь место в полосе пропускания на ПЧ прибора ZVA). Дополнительное постоянное смещение частоты гетеродина может быть определено с помощью скалярного измерения параметров преобразования частоты. На вход ИУ поступает ВЧ-сигнал, при этом выполняется измерение ПЧсигнала на выходе ИУ с центральной частотой, равной ожидаемой ПЧ, а диапазон развертки находится в рамках предполагаемого смещения гетеродина. Известное смещение может быть с легкостью скорректировано в настройках прибора ZVA.

Установите частоту исходного сигнала на порте 1 на фиксированное значение (например, 70 МГц) в центре полосы канала в диалоговом окне "Port Configuration" (конфигурация портов) прибора ZVA. При этом частота приема на порте 2 качается в небольшом диапазоне, в данном случае 10 кГц, который охватывает ожидаемое смещение выходной частоты преобразователей. На рис. 4-1 показаны соответствующие настройки меню Port Configurations прибора ZVA.

Meas	Physic	Sour	Source								Receiver					
	# Gen Frequency Frequency Result		ien Frequency Frequency Result		Gen Frequency Frequency Result		en Frequency Frequency Result		ien Frequency Frequency Result		en Frequency Frequency Result Power Power		Power Result	Frequency Frequency Re		Frequency Result
~	Port1		70 MHz		70 MHz	Pb		0 dBm	fb		5.97995 GHz 5.98005 GHz					
~	Port 2		fb		5.97995 GHz 5.98005 GHz	Pb		0 dBm								
~	Port 3		fb		5.97995 GHz 5.98005 GHz	Pb	***	0 dBm								
~	Port 4		fb		5.97995 GHz 5.98005 GHz	Pb	***	0 dBm								
Displ	ayed (Colum	ns		Balanced Ports and Port Group Same Connector Type at All Po	os		Measure So Receive Source	er Freque Frequenc	wa ncy sy	Freq Conv Of					

Рисунок 4-1 – Конфигурация портов для измерения смещения частоты несинхронизированных преобразователей

Для использования прибора ZVA в качестве анализатора спектра выберите ПЧфильтр с высокой селективностью (*Pwr BW AVG: Fine Adjust: Selectivity High*) и полосой пропускания 1 кГц или ниже, см. рисунок 4-2.

1 kHz		Selectivity Normal Igh
Dynamic Band	width at Low I	Frequencies

Рисунок 4-2 – Настройки полосы пропускания прибора ZVA

- I Выберите MEAS (измерение): Wave quantity (волновая величина): b2 Source Port 1
- Установите опорный маркер *Ref Marker* прибора ZVA на номинальную выходную частоту испытуемого преобразователя (в данном случае 5,98 ГГц)
- выберите параметры *Relative* (относительный) и *Search Max* (поиск максимума) для маркера *Marker 1* прибора ZVA.
- I Добавьте измеренное смещение ΔМ1 (в этом примере 5 кГц, см. рисунок 4-3) к номинальной частоте гетеродина в окне "Define Frequency" (задание частоты) (см. рисунок 4-5) прибора ZVA (5,910005 ГГц вместо 5,91 ГГц в этом примере).
 - Используйте эту скорректированную частоту гетеродина для всех последующих измерений, выполняемых прибором ZVA.

Рисунок 4-3 – Измерение смещения частоты несинхронизированного преобразователя (в этом примере 5 кГц)

ī

4.2 Измерение группового времени задержки спутниковых повышающих преобразователей прибором ZVA

4.2.1 Настройки прибора

I.

Во-первых, сгенерируйте двухтональный сигнал с апертурой (разницей частот) 5 МГц

- Channel (канал): Mode (режим): Mixer Delay Measurement (измерение задержки в смесителе): Define mixer Delay Meas (настройки измерения задержки в смесителе)
 - Задайте настройки измерения, как показано на приведенном ниже рисунке 4-4

Define Mixer Delay Measurement with	out LO Access 🛛 🔀
Source	Receiver
Lower Tone: Port 1	Measured Wave Quantities:
Upper Tone: Port 3	At DUT Input: a1 (Port 1) At DUT Output: b2 (Port 2)
Config Ext Generators	Measurement Setup
Aperture: 5MHz 2	Meas BW: 1 kHz
Use Internal Combiner	Measurement bandwidth must be > LO deviation from nominal value
Define Mixer Measurement	Selectivity O Normal
Set Frequencies and Powers	High (Recommended)
ОК	Cancel Help

Рисунок 4-4 – Окно Define Mixer Delay Measurement (настройки измерения задержки в смесителе)

Щелкните Define mixer Measurement (настройки измерения характеристик смесителя) и затем Set Frequencies (установка частот) и выполните настройку, как показано на рисунке 4-5

fine Frequenci	PS				δ
Internal Frequer 52 MHz88 MH RF	tz 1 0 x - 1 0 x -		Mixer 1	<u>•</u>	5 962 GHz5.998 GHz
Port Frequencie	\$	5.9	I GHz LO		Conversion
Туре	Port		Start/CW	Stop	Mixer 1:
Base Freq	RF	-	52 MHz	88 MHz	
Fixed	LO		5.91 GHz		
Auto	IF		5.962 GHz	5.998 GHz	
				ОК	Cancel Help

Рисунок 4-5 – Окно Define Frequencies (задание частот)

Щелкните ОК для сохранения настроек

Converter Stages: 1	Prepare Measurement of RF	Image
Port Setup	- 0	Port 2
52 MHz88 MHz 0 dBm		5.962 GHz5.998 GH: 0 dBr
	1/1 5.91 GHz -25 dBm None	
Define Mixer Measurement	1/1 5.91 GHz -25 dBm None	
Define Mixer Measurement	1/1 5.91 GHz -25 dBm None	Requires: - Power Cal
Define Mixer Measurement Config Ext Generators Set Frequencies	1/1 5.91 GHz -25 dBm None ♥ Define Correction ● Scalar only ○ Source Match	Requires: - Power Cal

Рисунок 4-6 – Окно Define Mixer Measurement (настройки измерения характеристик смесителя)

и Щелкните *OK* для сохранения настроек

Частотный диапазона ВЧ-сигнала (52-88 МГц) будет преобразован с повышением до частотного диапазона ПЧ-сигнала (5,962-5,998 ГГц) с помощью гетеродина с частотой 5,91 ГГц.

 Щелкните Set Frequencies and Powers (задание частот и мощностей) и задайте настройки, как показано на рисунке 4-7

t Frequencie	s and Powe	ers			
Frequency			Power		
Start Frequenc	y: 62.5 MH	2	Start Power:	-25 dBm	0 10 -
top Frequenc	ey: 82.5 MH	Iz 🗘 🚛 🖌	Stop Power:	0 dBm	0 10 -
W Frequency	70.MHz	0 10 -	CW Power:	-12 dBm	• H •
Frequency	Device	Range			
Lower Tone	Port1 Src	60 MHz80 MHz			
Upper Tone	Port 3 Src	65 MHz85 MHz			
Lower Tone	Port 2 Rov	5.97 GHz5.99 GHz			
Upper Tone	Port 2 Rov	5.975 GHz5.995 GHz			
	Fit Fred	quency Range			

Рисунок 4-7 – Окно Set Frequencies and Powers (задание частот и мощностей)

Эти настройки также позволяют определить диапазон измерения (полосу обзора). Уровень мощности несущей установлен на значение -12 дБмВт.

- и Щелкните *OK*.
- и Щелкните OK для сохранения настроек и закрытия окна

4.3 Калибровка

Для проведения измерений группового времени задержки необходимо выполнение двух типов калибровки

- Калибровка мощности
- Калибровка мощности выполняется с помощью соответствующего датчика мощности R&S NRP-Zxx (например, R&S NRP-Z21 или R&S NRP-Z11), подключенного к USB-порту прибора ZVA.
- и Калибровка задержки в смесителе

Процедуры калибровки, описываемые в последующих разделах 4.3.1 и 4.3.2, применяются для всех описанных измерений, выполняемых на приборе ZVA.

4.3.1 Калибровка мощности

 Щелкните Channel (канал) > mode (режим) > Scalar mixer Measurement (скалярное измерение характеристик смесителя) > Mixer Power Cal (калибровка мощности смесителя)

Scalar Mixer Measurement Power Calibration	
Port 1 (RF): Connect Pmtr to Port 1 RF IF Port 2 (IF): Connect Port 1 to Port 2 IF	2- 1.5 1.5 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-
Abort Sweep Source Cal Settings Port 1 Cal Power: -10 dBm Maximum Number of Readings: 1 Toterance: 1 dB Flatness and Reference Receiver Cal	Power Meter Power Meter Config. Auto Zero Power Meter Corr. Power Meter Corr. Perform Verification Sweep After Cal

Рисунок 4-8 – Окно Scalar Mixer Measurement Power Calibration (калибровка мощности смесителя)

- и Подключите датчик мощности к USB-порту прибора ZVA
- и Щелкните Power Meter Config... (настройка измерителя мощности)

Щелкните *Refresh Tables* (обновить таблицы). Подключенный датчик мощности должен отобразиться в виде Pmtr 1 (измеритель мощности 1) в поле *Configured* (конфигурация), как показано на рисунке 4-9.

Refresh Tables	Found:				
Refresh Lables	1/ICA Alien		(SIG) (1) (1)	1040 10120 001	10000000
	VIDA Allas	Driver	Interface A	ddress/Ser#	ID String
Add v Add All v					
onfigured: # Nar	ne Driver	Interface	Address/S	er# ID Strir	ionfig NRP-Zxx
Pmtr 1	NRP-Z21	Other	100343	NRP-Z	221::100343
Add Other	Modify		Delete		Delete All

Рисунок 4-9 – Обнаружение датчика мощности NRP-Z21, подключенного к USB-порту прибора ZVA

Щелкните Modify Settings (изменение настроек) и установите настройки, показанные на рисунке 4-10 (Cal Offset = сумма ослаблений сумматора мощности и 6 дБ аттенюатора, Max. Number of Readings (максимальное число показаний), Tolerance (допуск) и Power Meter Readings (показания измерителя мощности)).

Modify Source Power Cal Setting	js 🛛
Calibration Power Settings	
Port Basis Offset	Atten Cal Offset Cal Pwr
RF (P1) Pb • 0 dB	Auto -12 dB -12 dBm
R-Z-	
<u> </u>	
Basis Offset	Atten Cal Offset
Pb (Channel Base Power): 0 dB	m
Power Cal Sweeps	
Maximum Number of Readings:	5 🔅 🖉 🗸
Tolerance:	0.2 dB
Conversion Foster	
Convergence Factor:	
Includes	Use
Flatness Cal	Reference Receiver after
Reference Receiver Cal	2 Power Meter Readings
Switch Off All Other Sources D	uring Cal Sweep
OK	Cancel Help

Рисунок 4-10 – Окно Modify Source Power Cal Settings (изменение настроек калибровки мощности)

I

Калибровку мощности следует выполнять систематически:

 Подключите датчик мощности (в этом примере NRP-Z21) в плоскости калибровки (после 6 дБ аттенюатора, см. рисунок 4-11):

ZVA

Рисунок 4-11 – Подключение датчика мощности в плоскости калибровки (выход)

Щелкните *Port1* (см. зеленую стрелку), чтобы выполнить калибровку порта 1 для нижнего тона (это займет несколько секунд):

ī

1

- Щелкните *Port3* (см. зеленую стрелку), чтобы выполнить калибровку порта 3 для верхнего тона (это займет несколько секунд):
 - Port 3 (UT): Connect Pmtr 1 to Ext. Dev.
- Организуйте двустороннее подключение в плоскости калибровки с помощью сквозного соединения, как показано на рисунке 4-12:

Рисунок 4-12 – Использование сквозного соединителя для организации двустороннего подключения в плоскости калибровки для следующего этапа калибровки мощности

 Щелкните Port2 (см. зеленую стрелку), чтобы выполнить калибровку порта 2 (это займет несколько секунд):

Scalar Mixer Measurement Power Calibration	
Port 1 (RF): Connect Pmtr to Port 1 RF: Pass. Max Dev 0.01 dB F: Pass. Max Dev 0.03 dB Port 2 (IF): Connect Port 1 to Port 2 F: Finished	2/31 dB Mag 0.1 dB / -7.5 -7.6 -7.7 -7.8 -7.9 -8 -8.1 -8.2 -8.3 Ch1 52 MHz 88 MHz
Abort Sweep Source Cal Settings Port 1 Cal Power: -12 dBm Maximum Number of Readings: 5 Tolerance: 0.2 dB Flatness and Reference Receiver Cal	Finished Power Meter Pmtr 1 Power Meter Config Auto Zero NRP-Z21 Power Meter Corr
Modify Settings	Ser #: 100343 Perform Verification Sweep After Cal Close Help

Рисунок 4-13 – Успешная скалярная калибровка мощности смесителя

Теперь уровни выходной мощности каждого из двух тональных сигналов в опорной плоскости откалиброваны на -12 дБмВт.

4.3.2 Калибровка задержки в смесителе

Можно пропустить эту главу, если групповое время задержки испытуемого преобразователя намного превышает групповое время задержки в измерительном тракте между портами 1 и 2 (кабели и аттенюаторы). Это справедливо в случае стандартного преобразователя частоты и связано с использованием собственных фильтров, групповое время задержки которых значительно превышает групповое время задержки ВЧ-кабелей и аттенюаторов.

Если есть какие-либо сомнения, можно выполнить калибровку с помощью известного калибровочного смесителя. Поскольку для спутниковых преобразователей, как правило, требуется информация лишь об относительном групповом времени задержки (а не абсолютном), целесообразно использовать для калибровки "эталонный" смеситель с линейной фазовой характеристикой и равномерным ГВЗ.

К гетеродину эталонного смесителя

Рисунок 4-14 – Установка для калибровки задержки в смесителе с использованием прибора SMB100A (возможно использование и других генераторов сигналов)

- Подключите "эталонный" или калибровочный смеситель вместо ИУ (например, ZX05-153MH-S+ от компании Mini-Circuits).
 Соедините порт 1 прибора ZVA с ПЧ-портом эталонного смесителя посредством 6 дБ аттенюатора.
 Соедините порт 2 прибора ZVA с ВЧ-портом эталонного смесителя посредством 6 дБ аттенюатора.
- и Используйте внешний генератор сигналов (R&S[®]SMB) в качестве гетеродина. Установите частоту на значение 5,91 ГГц, а уровень мощности на 13 ∂БмВт.
- Соедините выход опорных сигналов испытуемого преобразователя с входом опорных сигналов используемого генератора. Настройте генератор сигналов в качестве внешнего генератора опорных сигналов.
- Для синхронизации прибора ZVA с генератором сигналов соедините выход опорных сигналов генератора с входом опорных сигналов прибора ZVA. Генератор сигналов должен быть синхронизирован с выходом опорного сигнала испытуемого преобразователя.

Настройте прибор ZVA следующим образом:

- System (система) > External Reference (внешний генератор опорных сигналов).
 Прибор ZVA и генератор сигналов теперь заблокированы.
- PWR BW AVG > Meas Bandwidth: 1 KHz (полоса измерения: 1 кГц)
- и AVERAGE FACTOR (коэффициент усреднения): 10
- AVERAGE ON (усреднение включено)
- Channel (канал) > Mode (режим) > Mixer Delay Measurement (измерение задержки в смесителе) > Cal Mixer Delay Meas (калибровка задержки в смесителе)

Mixer Delay Meas Calibration 🛛 🛛 🔀
1. Calibration Mixer Data Constant Delay Variable Delay
Const. Delay: 0 s
Load
Divide Calibration Data by 2
2. Calibration
Connect Calibration Mixer
Take Cal Sweep
3. Cal Data Manager Save Load
Close Help

Рисунок 4-15 – Окно Mixer Delay Meas Calibration (калибровка задержки в смесителе)

- Для задания относительного группового времени задержки выберите Constant Delay (постоянная задержка) и введите значение в поле Const. Delay. Delay: Os (задержка: 0 с).
- и Щелкните *Take Cal Sweep* (калиброванная развертка).
- Дождитесь появления сообщения "Finished" (это займет несколько секунд) и закройте диалоговое окно.

При необходимости можно сохранить и впоследствии вызвать калибровочные данные с помощью кнопок "Save" и "Load". Полная процедура калибровки завершена, можно перейти к измерению группового времени задержки.

4.4 Измерение группового времени задержки и результаты

Для проведения измерения воспользуйтесь измерительной установкой, показанной на рисунке 4-16, с учетом частотного диапазона. Испытуемый преобразователь поддерживает работу на ПЧ 70 МГц и 140 МГц, тогда как описание приводится только для частоты 70 МГц. Испытания на ПЧ 140 МГц выполняются аналогично.

Испытуемый смеситель/преобразователь

Рисунок 4-16 – Установка для измерения группового времени задержки испытуемого преобразователя с помощью прибора ZVA (такая установка используется для всех прочих описанных измерений с использованием прибора ZVA).

На рисунке 4-17 показан график группового времени задержки для ПЧ 70 МГц, при этом частота сигнала с преобразованной вверх частотой равна 5980 МГц. Используемая полоса обзора составляет 36 МГц и при этом является полосой, в которой действительны спецификации ГВЗ испытуемого преобразователя.

Рисунок 4-17 – Измеренное групповое время задержки испытуемого преобразователя на ПЧ 70 МГц

4.5 Получение группового времени задержки с линейной, параболической и неравномерной зависимостью от частоты с помощью ПО MATLAB

Как правило, результаты измерения группового времени задержки для спутниковых повышающих преобразователей регламентированы для трех составляющих:

- Групповое время задержки с линейной зависимостью от частоты
- Групповое время задержки с параболической зависимостью от частоты
- Групповое время задержки с неравномерной зависимостью от частоты

Для выделения этих трех составляющих из результатов измерения, полученных с помощью прибора ZVA (см. рисунки 4-17 и 4-23), используется ПО Matlab. Необходимо внести некоторые изменения в код MATLAB, отвечающий за проведение расчетов. Подробное описание изменений приводится ниже.

Для расчета этих трех величин сначала необходимо экспортировать комплексные данные кривых, которые были получены при измерении группового времени задержки, выполненном прибором ZVA.

- Щелкните File (файл) > Trace Data (данные кривой) > Export complex Data (экспорт комплексных данных) (в приборе ZVA)
- Сохраните данные в файл .csv и обеспечьте доступ к этому файлу со стороны компьютера с запущенным ПО MATLAB.

4.5.1 Код MATLAB для расчета группового времени задержки и построения соответствующих графиков

```
1
    x=data(:,1)
 2
    y=data(:,2)
 3
    plinear= polyfit(x,y,1)
 4
    flinear = polyval(plinear,x);
 5
    pparabolic= polyfit(x,y,2)
    fparabolic = polyval(pparabolic,x);
 6
 7
                     %%%%%%%% change value here %%%%%%%%
 80
    val = 4
 9
10 switch val
11
12
    case 1 %original plot
13
    plot(x,y,'-')
14
15
    case 2 %linear group delay plot
16
    plinear= polyfit(x,y,1)
17
    flinear = polyval(plinear,x);
18
    plot(x,flinear,'-')
19
    l1=max(flinear)-min(flinear)
20
    lnu=11*1e+09
21
    l=max(x)-min(x)
22
    lden=1*1e-6
23
    linear=lnu/lden % in ns / MHz
24
25
    case 3 %parabolic group delay plot
26
    pparabolic= polyfit(x,y,2)
27
    fparabolic = polyval(pparabolic,x);
28
    fparabolicplot=fparabolic-flinear
29
    plot(x,fparabolicplot,'-')
30
    pv=max(fparabolic)-min(fparabolic)
31
    pnu=pv*1e+09
32
    p=(max(x)-min(x))/2
33
    pden=p*1e-6
34
    parabolic=pnu/(pden.^2) %in ns / MHz<sup>2</sup>
35
36
    case 4 %ripple group delay plot
37
    fripple=y - fparabolic
38
    plot(x,fripple,'-')
39
    r1=max(fripple)-min(fripple)
40
    rnu=r1*1e+09
41
    ripple=rnu %in ns peak-to-peak
42
43
    end
```

Для расчета конкретного ГВЗ (с неравномерной, параболической или линейной зависимостью) измените значение в строке 7 следующим образом:

- Val = 1 для отображения графика кривой, непосредственно экспортированного из прибора ZVA
- Val = 2 для отображения графика группового времени задержки с линейной зависимостью от частоты и самого значения задержки (в командном окне MATLAB)
- Val = 3 для отображения графика группового времени задержки с параболической зависимостью от частоты и самого значения задержки (в командном окне MATLAB)
- Val = 4 для отображения графика группового времени задержки с неравномерной зависимостью от частоты и самого значения задержки (в командном окне MATLAB)
- После ввода значения требуемого группового времени задержки скопируйте и вставьте код в командное окно MATLAB.

4.5.1.1 Графики MATLAB и значения группового времени задержки на ПЧ 70 МГц

Рассчитанные значения для составляющих группового времени задержки с линейной, параболической и неравномерной зависимостью от частоты отображаются в командном окне MATLAB:

- Линейная = 0,0035 нс / МГц
- Параболическая = 0,0052 нс / МГц²

и Неравномерная = 0,7428 нс (размах)

Рисунок 4-18 – Исходный график Matlab измеренного группового времени задержки (Val = 1)

Рисунок 4-19 – График Matlab для линейной составляющей измеренного группового времени задержки (Val = 2)

Рисунок 4-20 – График Matlab для параболической составляющей измеренного группового времени задержки (Val = 3)

Рисунок 4-21 – График Matlab для неравномерной составляющей измеренного группового времени задержки (Val = 4)

4.5.1.2 Код MATLAB для расчета различных составляющих группового времени задержки (выбор группового времени задержки)

ı.

Скопируйте и вставьте код в командное окно Matlab и требуемым образом измените значение параметра val (1, 2, 3 или 4)

```
x=data(:,1)
y=data(:,2)
plinear= polyfit(x,y,1)
flinear = polyval(plinear,x);
pparabolic= polyfit(x,y,2)
fparabolic = polyval(pparabolic,x);
val = 4
            %%%%%%%% измените значение %%%%%%%%%
switch val
case 1 % исходный график
plot(x,y,'-')
case 2 % график группового времени задержки с линейной зависимостью
plinear= polyfit(x,y,1)
flinear = polyval(plinear,x);
plot(x,flinear,'-')
11=max(flinear)-min(flinear)
Inu=I1*1e+09
l=max(x)-min(x)
Iden=I*1e-6
linear=Inu/Iden
                              % в нс / МГц
case 3 % график группового времени задержки с параболической зависимостью
pparabolic= polyfit(x,y,2)
fparabolic = polyval(pparabolic.x);
fparabolicplot=fparabolic-flinear
plot(x,fparabolicplot,'-')
pv=max(fparabolic)-min(fparabolic)
pnu=pv*1e+09
p=(max(x)-min(x))/2
pden=p*1e-6
                              % в нс / МГц<sup>2</sup> макс.
parabolic=pnu/(pden.^2)
case 4 % график группового времени задержки с неравномерной зависимостью
fripple=v - fparabolic
plot(x,fripple,'-')
r1=max(fripple)-min(fripple)
rnu=r1*1e+09
ripple=rnu
                              % в нс (размах)
end
```

4.6 Измерение коэффициента преобразования

По завершении всех процедур калибровки, описанных в разделах 4.3.1 и 4.3.2, может быть запущено измерение коэффициента преобразования:

Щелкните Trace (кривая) > Measure (параметр) >Ratio (отношение) > b2/a1

Ниже показаны результаты измерения коэффициента преобразования испытуемого преобразователя с ПЧ 70 МГц и 140 МГц.

ī

Рисунок 4-23 – Коэффициент преобразования испытуемого преобразователя с ПЧ 140 МГц

4.7 Измерение интермодуляционных искажений с помощью ZVA

Вместо "классических" измерений интермодуляционных искажений с помощью двух генераторов сигналов (или 2-канального генератора сигналов, такого как R&S[®]SMW) и анализатора спектра, подобного тому, который будет описан в главе 4.9, в ряде случаев можно проводить измерения с помощью прибора ZVA, что не требует использования вспомогательных средств, не считая пассивного сумматора мощности.

Для проведения измерений интермодуляционных составляющих вновь используется измерительная установка, показанная на рисунке 4-16.

Целкните Channel (канал): Mode (режим): Intermod Distortion Meas (измерение интермодуляционных искажений): Define Intermod Dist Meas (настройка измерения интермодуляционных искажений) и задайте настройки, как показано на рисунке 4-24:

Define Intermodulati	on Distortion Me	asurement 🛛 🔛					
Source		Receiver					
Lower Tone:	Port 1 💌	Measured Wave Quantities:					
Upper Tone:	Port 3	At DUT Input: a1 , a3 At DUT Output: b2 💌					
Two Tone Output:	Ext. Dev. 💌	Meas BW: 1 kHz					
Config Ext Ge	nerators	Measurement Bandwidth					
Tone Distance: 5 M	Hz 💈 🗷 👻	must be < Tone Distance Selectivity					
Use Internal Corr	hbiner	 Normal High (Recommended) 					
Define Mixer Measurement.							
Set Frequencies and Powers							
Select IMD quantities via Measure : Intermod Distortion Quantities Connect DUT input to Ext. Dev. Src and DUT output to Port 2							

Рисунок 4-24 – Настройки прибора ZVA для проведения измерения интермодуляционных искажений

Щелкните Define Mixer Measurement (настройки измерения характеристик смесителя): Set Frequencies (задание частот) и задайте настройки для портов и частот, как показано на рисунках 4-25 и 4-26.

Port1	$\neg \land$	Port 2
52 MHz88 MHz 0 dBm		5.962 GHz5.998 GHz 0 dBm
	5.91 GHz	
	-25 dBm	
Define Mixer Measurement	-25 dBm None	
Define Mixer Measurement	-25 dBm None	Requires: - Power Cal
Define Mixer Measurement Config Ext Generators Set Frequencies	-25 dBm None Selar only Scalar only Source Match	Requires: - Power Cal

Рисунок 4-25 – Настройки ZVA для проведения измерения интермодуляционных искажений

Port Frequencies	
Port Frequencies Conversion	
and the second	
Type Port Start/CW Stop Mixer 1:	
Base Freq RF • 52 MHz 88 MHz IF = RF + LO (Up. USB	~
Fixed LO • 5.91 GHz	
Auto IF • 5.962 GHz 5.998 GHz	

Рисунок 4-26 – Настройки частоты ZVA для проведения измерения интермодуляционных искажений

Целкните Channel (канал): Mode (режим): Intermod Distortion Meas (измерение интермодуляционных искажений): CW Mode Intermod Spectrum (спектр интермодуляционных искажений в режиме непрерывного сигнала) и задайте настройки, как показано на рисунке 4-27.

Define CW Mode I	ntermodulatior	n Spectrum 🔯
CW Frequency:	70 MHz	* *
Tone Distance:	5 MHz	*
Max IM Order.	3 🛩	
CW mode intermo some changes of	dulation spectru channel settings	m requires
When Activating	Intermodulation	Spectrum
Overwrite Cur Oreate New C	rent Channel Se Channel	ttings
ОК	Cancel	Help

Рисунок 4-27 – Настройки в окне Define CW Mode Intermodulation Spectrum

Щелкните Channel (канал): Mode (режим): Port Config (конфигурация портов) и задайте настройки, как показано на рисунке 4-28 (Cal Power Offset: сумма ослаблений резистивного сумматора мощности и 6 дБ аттенюатора – около 12 дБ). Уровень мощности в поле Power Result (-25 дБмВт) соответствует приблизительно 0 дБмВт выходной мощности испытуемого преобразователя, что является заданной мощностью для интермодуляционных составляющих.

Meas Physic Source									Receiver			
	#	Gen	Frequen	cy	Frequency Result	Power		Power Result	Frequency		Frequency Result	
7	Port1		70 MHz		70 MHz	Pb-12 dB		-25 dBm	fb + 5.91 GHz		5.9725 GHz 5.9925 GH	
-	Port2		70 MHz	-	70 MHz	Pb		-13 dBm				
~	Port 3	P	75 MHz		75 MHz	Pb-12 dB		-25 dBm				
1	Port 4		75 MHz		75 MHz	Pb	***	-13 dBm				
	Pmtr 1								fb	-	62.5 MHz 82.5 MH	

Рисунок 4-28 – Настройки в окне Port Configurations (конфигурация портов)

 Щелкните Stimulus (задающее воздействие) и задайте настройки, как показано на рисунке 4-29

				2
Lin Frequency		Power		
Channel Base fb	~	Enter & Display	Port 1 Source	~
62.5 MHz	<u> 2</u> -	Start	-42 dBm	0 10 -
82.5 MHz		Stop:	-17 dBm	0 10 -
20 MHz	0 10 -	CW:	-21.2 dBm	3 21 -
		ОК	Cancel	Help
	Lin Frequency Channel Base fb 62.5 MHz 82.5 MHz 70 MHz	Lin Frequency Channel Base tb 62.5 MHz 82.5 MHz 70 MHz 70 MHz 82 S MHz	Lin Frequency Channel Base Ib 62.5 MHz 82.5 MHz 70 MHz CM: OK	Lin Frequency Channel Bose tb Channel

Рисунок 4-29 – Настройки в окне Stimulus (задающее воздействие)

- Sweep (развертка): Number of points (количество точек) 201
- и Power BW AVG (мощность полоса усреднение)
- Снимите метку Average On (усреднение включено)

4.7.1 Результаты измерения

н

На рисунке 4-30 показаны результаты измерения интермодуляционных искажений испытуемого преобразователя на ПЧ 70 МГц с применением двухтонального метода. Используемое разнесение тонов составляет 5 МГц, а полоса обзора 20 МГц.

С помощью поворотной ручки настройте уровень двухтонального сигнала для обеспечения 0 дБмВт на тон в меню Power BW AVG: Power.

Настройки маркеров:

- и Marker (маркер): Ref Marker (опорный маркер) 70 MHz (МГц)
- и Marker 1 (маркер 1): Delta Mode (режим дельта-маркера): -5 MHz (МГц)

Marker 2 (маркер 2): 75 MHz (МГц)

1

I

Marker 3 (маркер 3): Delta Mode (режим дельта-маркера): 10 MHz (МГц)

Рисунок 4-30 – Измерение интермодуляционных искажений на ПЧ 70 МГц с помощью прибора ZVA. Уровни интермодуляционных составляющих третьего порядка составляют -45 дБ и -47 дБ относительно 0 дБмВт для сигнала с частотой 70 МГц

4.8 Измерение точки компрессии 1 дБ с помощью ZVA

Для проведения измерения точки компрессии 1 дБ вновь используется измерительная установка, показанная на рисунке 4-16 (за тем лишь исключением, что выход сигналов источника порта 3 отключен)

Настройки прибора для проведения измерения точки компрессии 1 дБ (начиная с первого измерения интермодуляционных искажений, описанного в главе 4.4):

- SWEEP (развертка): Sweep Type (тип развертки): Power (мощность): Channel Base Frequency (главная частота канала) 70 MHz (МГц)
- и MEAS (измерение): Rations (отношения): b2/a1 Src Port 1
- I START (начало): -20 dBm (дБмВт) (по умолчанию)
- и STOP (конец): 0 dBm (дБмВт) (по умолчанию)

Mode (режим): Port config (конфигурация портов)

Отключите порт 3 в поле Source: Gen

Meas	Physic	Sour	се	
	#	Gen	Frequen	icy
2	Port1	V	70 MHz	
V	Port2		70 MHz	
	Port 3		75 MHz	
	Port 4	Г	75 MHz	

- и SCALE (шкала): Ref Position (опорное положение) 0: Close (закрыть)
- и SCALE (шкала): Scale/Div (деление шкалы) 5 dB (дБ)
- Trace Funct (функция кривой): Trace Statistics (статистические данные кривой): Compression Point (точка компрессии)

На рисунке 4-31 показаны результаты измерения точки компрессии на входе и выходе испытуемого преобразователя (-9 дБмВт на входе и + 14,8 дБмВт на выходе). Коэффициент преобразования испытуемого преобразователя составляет приблизительно 25 дБ (около 24 дБ в точке компрессии 1 дБ).

Рисунок 4-31 – Результаты измерения точки компрессии испытуемого преобразователя, полученные с помощью прибора ZVA

4.9 Измерительная установка для измерений интермодуляционных искажений с помощью анализатора спектра и сигналов FSW и двух сигнальных генераторов SMB

Рисунок 4-32 – Измерительная установка для проведения измерений интермодуляционных искажений с использованием прибора FSW и двух приборов SMB

Для измерения интермодуляционных искажений с помощью прибора FSW и двух приборов SMB используется измерительная установка, показанная на рисунке 4-32. Измерения выполняются на ПЧ 70 МГц и 140 МГц; испытуемый преобразователь должен быть настроен соответствующим образом. Наличие синхронизации измерительных приборов R&S с выходом опорного сигнала испытуемого преобразователя необязательно. ПЧ 70 МГц: Конфигурация прибора SMB:

PRESET (предустановки)

Прибор SMB 1: Frequency (частота): 67,5 *МГц; Level* (уровень): -15 ∂БмВт Прибор SMB 2: Frequency (частота): 72,5 *МГц; Level* (уровень): -15 ∂БмВт *RF ON*

Конфигурация прибора FSW:

РRESET (предустановки) Frequency (частота): 5,98 ГГц Span (полоса обзора): 36 МГц RBW (полоса разрешения): 10 кГц VBW (полоса видеофильтра): 10 кГц Attenuation (ослабление): 4 дБ

Характерные результаты измерения показаны на рисунке 4-33. При апертуре 5 МГц (разнесение частот двухтонального сигнала) уровни интермодуляционных составляющих третьего порядка (d3) составляют –44,3 дБ и –46,9 дБ.

Рисунок 4-33 – Результаты измерения интермодуляционных искажений на ПЧ 70 МГц (при апертуре 5 МГц) с помощью прибора FSW

4.10 Измерение характеристик фазового шума с помощью прибора FSW

Испытуемый смеситель/преобразователь

Рисунок 4-34 – Измерительная установка для измерения характеристик фазового шума с использованием приборов FSW и SMB

Измерительная установка, показанная на рисунке 4-34, используется для проведения измерений характеристик фазового шума. Выполните настройку приборов, как показано ниже. Измерение выполняется на ПЧ 70 МГц. Наличие синхронизации измерительных приборов R&S с выходом опорного сигнала испытуемого преобразователя необязательно.

ПЧ 70 МГц:

- и Прибор SMB:
- и PRESET (предустановки)
- и Frequency (частота): 70 МГц; Level (уровень): -19 ∂БмВт,
- I RF ON

Прибор FSW:

- MODE (режим): Phase Noise (фазовый шум) (Примечание Требуется наличие опции фазового шума R&S[®]FSW-K40)
- і Frequency (частота): 5,98 ГГц
- выберите вкладку Phase Noise (фазовый шум), расположенную в правой части экрана прибора FSW, и задайте настройки, как показано на рисунке 4-35:

Measurement Ra	ange	
Start	10.0 Hz	
Stop	1.0 MHz	
Sweep Forwa	rd On C	off
Presets		
Fast	Normal Aver	raged
Globals		
RBW	[10.0 %	
AVG Count	1	
Multiplier	On Off 10	
Sweep Mode	Swept	
IQ Window	Swept Gaussian	

Рисунок 4-35 – Настройки для проведения измерений характеристик фазового шума

Типичный график фазового шума, измеренного прибором FSW на BЧ-выходе испытуемого преобразователя на ПЧ 70 МГц, показан на рисунке 4-36:

Рисунок 4-36 – График фазового шума, измеренного прибором FSW на выходе испытуемого преобразователя на ПЧ 70 МГц

Предельная линия "converter1" используется в качестве критерия прохождения / непрохождения (pass/fail) испытания. В таблице маркеров, представленной в нижней части экрана, показаны уровни фазового шума для нескольких значений смещения частоты.

Примечание – Заданные значения уровней фазового шума приборов SMB и FSW значительно ниже измеренных значений уровня фазового шума испытуемого преобразователя, поэтому ими можно пренебречь. Ниже показаны типовые графики фазового шума, полученные с помощью прибора FSW для различных BЧ:

Рисунок 4-37 – Типичные графики фазового шума, полученные с помощью прибора FSW для различных ВЧ

4.11 Измерение побочного излучения

Для измерения побочного излучения используется измерительная установка, показанная на рисунке 4-34 (идентичная той, которая используется для измерения фазового шума). Как правило, выделяют два типа побочного излучения, характерного для повышающих преобразователей:

- Побочное излучение, зависящее от сигнала и измеряемое в дБн (относительно уровня выходного сигнала). В этом случае для проведения измерений необходимо подать сигнал без побочных составляющих, уровень мощности которого соответствует номинальному, на повышающий преобразователь.
- Побочное излучение, не зависящее от сигнала и измеряемое в дБмВт (абсолютный уровень). Для проведения измерения следует отключить входной сигнал.

В случае испытуемых преобразователей уровень побочного излучения, зависящего от сигнала, задается равным -60 дБн для отстроек частоты < 1 МГц и -70 дБн для отстроек частоты >= 1 МГц. Уровень побочного излучения, не зависящего от сигнала, составляет < -70 дБмВт. Максимальная отстройка частоты, определенная для измерений побочного излучения, составляет +-500 МГц.

Для проведения измерений побочного излучения в соответствии с техническими требованиями преобразователя рекомендуется использовать функцию спектральной маски излучения прибора FSW, позволяющую оперировать как абсолютным, так и относительным предельными уровнями.

Конфигурация прибора SMB (для побочного излучения, зависящего от сигнала)

- и Frequency (частота): 70 МГц; Level (уровень): -19 ∂БмВт
- ı RF ON

Конфигурация прибора FSW:

- I Frequency (частота): 5,98 ГГц
- и Span (полоса обзора): 1 ГГц
- I Ref Level Offset (смещение опорного уровня): 6 ∂Б (6 ∂Б аттенюатор, подключенный перед ВЧ-входом прибора FSW)
- и Настройте уровень прибора SMB таким образом, чтобы на экране прибора FSW отображался уровень 0 дБмВт
- MEAS (измерение): Spectrum Emission Mask (спектральная маска излучения)
- TRACE (кривая): Trace1 (кривая 1): Detector Type (тип детектора): Positive Peak (положительный пиковый)
- Reference Range (опорный диапазон): Power Reference Typ Peak Power (типовая пиковая мощность)
- и MEAS CONFIG (конфигурация измерения): Sweep List (список разверток)
- Внесите изменения в список разверток в соответствии с рисунком 4-38 (добавьте два диапазона, измените начальную и конечную частоты диапазонов, измените ширину полос пропускания и задайте относительные предельные уровни)

Sweep List	Reference	Range P	ower Class	ses MSR	Settings	Standard Files	
	Range 1	Range 2	Range 3	Range 4	Range 5		~
Range Start	-500 MHz	-1 MHz	-100 kHz	100 kHz	1 MHz		
Range Stop	-1 MHz	-100 kHz	100 kHz	1 MHz	500 MHz		
Fast SEM	Off	Off	Off	Off	off		
Filter Type	Normal(3	Normal(3	Normal(3	Normal(3	Normal(3		
RBW	300 Hz	300 Hz	30 kHz	300 Hz	300 Hz		
VBW	1 kHz	1 kHz	3 MHz	1 kHz	1 kHz		
Sweep Time Mod	e Auto	Auto	Auto	Auto	Auto		
Sweep Time	433 ms	14 ms	140 µs	14 ms	433 ms		
Ref Level	6 dBm	6 dBm	6 dBm	6 dBm	6 dBm		
RF Att Mode	Auto	Auto	Auto	Auto	Auto		
RF Attenuation	10 dB	10 dB	10 dB	10 dB	10 dB		
Preamp	Off	Off	Off	off	off		
Transducer	None	None	None	None	None		
Limit Check 1	Relative	Relative	Relative	Relative	Relative	Alexandre Monte March La march 1	
Rel Limit Start 1	-70 dBc	-60 dBc	300 dBc	-60 dBc	-70 dBc		
Rel Limit Stop 1	-70 dBc	-60 dBc	300 dBc	-60 dBc	-70 dBc	0 MHz/	
ult Summary							
	1.000		Ha	T 07000	1 C	-77.50 dBm -77.4	8
Insert before	10.000	Insert after		Delete	E.		Symetrical Setup

Рисунок 4-38 – Список разверток для спектральной маски излучения для побочного излучения, зависящего от сигнала, в соответствии с техническими требованиями преобразователя

и Span (полоса обзора): 50 МГц

Прибор FSW выполняет развертку в полосе 50 МГц с центральной частотой 5,98 ГГц и осуществляет проверку пиковых уровней побочного излучения в окрестности частоты несущей на соответствие частотно-зависимым относительным предельным уровням -60 дБн и -70 дБн, соответственно (см. рисунок 4-39). Наивысшие уровни побочного излучения в каждом из диапазонов отображаются в сводной таблице результатов (Result Summary). Кроме того, уровни побочного излучения могут быть определены с помощью маркеров.

Рисунок 4-39 – Измерение побочного излучения, зависящего от сигнала, с помощью функции спектральной маски излучения прибора FSW в соответствии с техническими требованиями преобразователя (полоса обзора 50 МГц)

и Span (полоса обзора): 1 ГГц

Теперь прибор FSW выполняет развертку в полосе 1 ГГц и осуществляет проверку уровней побочного излучения, более отдаленных от частоты несущей, см. рисунок 4-40.

MultiView 🖽 S	pectrum					~
Ref Level 6.00 dBm	Offset 6.00 dB	Mode Auto FFT				SGL
1 Spectrum Emissio	n Mask					1Pk Clrw
Limit Check		PASS			M1[1]	-80.95 dBm
0 dBm P<200						5.9105000 GHz
		1			M2[1]	-81.91 dBm
-10 d8m						0.3223000 GHZ
200.000.000 0.00						
-20 d8m-						
30 d9m						
50 Willin						
-40 d8m-						
-50 dBm		+ +				
-60 dBm						
TO diam						
ovo ubin						
			MI		MO	
-80 d8m			TRA		Y	
			1 5 1			
-90 d8m			P tot			
CE 5.98 GHz		1001 pts	2 NI	100.0 MHz/		Span 1.0 GHz
2 Result Summary						None
2 resource ourning y	Peak Power 0.00	dBm		RBV	V 30.000 kHz	TUTIC
Range Low	Range Up	RBW	Frequency	Power Abs	Power Rel	ALimit
-500.000 MHz	-1.000 MHz	300.000 Hz	5.97850 GHz	-75.96 dBm	-75.97 dB	-5.97 dB
-1.000 MHz	-100.000 kHz	300.000 Hz	5.97945 GHz	-67.54 dBm	-67.55 dB	-7.55 dB
100.000 kHz	1.000 MHz	300.000 Hz	5.98055 GHz	-66.87 dBm	-66.87 dB	-6.87 dB
1.000 MHz	500.000 MHz	300.000 Hz	5.98150 GHz	-75.67 dBm	-75.67 dB	-5.67 dB

Рисунок 4-40 – Измерение побочного излучения, зависящего от сигнала, с помощью функции спектральной маски излучения прибора FSW в соответствии с техническими требованиями преобразователя (полоса обзора 1000 МГц)

Для измерения побочного излучения, не зависящего от сигнала, задайте следующие настройки прибора:

Прибор SMB:

RF OFF

Прибор FSW:

- и MEAS CONFIG (конфигурация измерения): Sweep List (список разверток)
- Внесите изменения в список разверток в соответствии с рисунком 4-41 (удалите диапазоны, задайте абсолютные значения для предельных уровней)

Sweep List R	eference	Range I	ower Classe	MSR Settings	Standard Files	
	Range 1	Range 2	Range 3			0.0
Range Start	-500 MHz	-100 kHz	100 kHz			
Range Stop	-100 kHz	100 kHz	500 MHz			
Fast SEM	off	off	tto			
Filter Type	Normal(3	Normal(3.	Normal(3			
RBW	300 Hz	300 Hz	300 Hz			
VBW	1 kHz	1 kHz	1 kHz			
Sweep Time Mode	Auto	Auto	Auto			
Sweep Time	433 ms	14 ms	433 ms			
Ref Level	6 dBm	6 dBm	6 dBm			
RF Att Mode	Auto	Auto	Auto			
RF Attenuation	10 dB	10 dB	10 dB			
Preamp	off	off	tto			
Transducer	None	None	None			
Limit Check 1	Absolute	Absolute	Absolute			
Abs Limit Start 1	-70 dBm	-70 dBm	-70 dBm			
Abs Limit Stop 1	-70 dBm	-70 dBm	-70 dBm			
ult Summary					DOME 20	con
Insert	Rainin	Insert		Delete		Symetrical Setu
before Bange	20,000	after		Range		On Off

Рисунок 4-41 – Список разверток для спектральной маски излучения для побочного излучения, не зависящего от сигнала, в соответствии с техническими требованиями преобразователя

На рисунке 4-42 показано не зависящее от сигнала побочное излучение испытуемого преобразователя и выполнена проверка на соответствие абсолютному предельному значению -70 дБмВт. Маркеры были использованы для определения наивысших уровней побочного излучения в полосе обзора 1 ГГц.

MultiView 🐵 Spectr	rum 🧩						\ \
Ref Level 6.00 dBm Off	set 6.00 dB Mode Aut	o FFT			Marker 1		SGL
1 Spectrum Emission Mas	sk			5.9104 G	Hz	x	• 1Pk Clrw
Limit Check		PASS				WILII	-81.13 dBm 5.9104000 GHz
U UBIII T CLOU						M2[1]	-81.97 dBm
-10 dBm				-			6.3225000 GHz
-20 dBm			_				
-30 dBm			_				
-40 dBm							
-50 dBm			_				
-60 dBm			_				
-70 dBm							
-80 dBm		M1	MB			M2	
-90 dBm		6.6.4	-				
CF 5.98 GHz	1	001 pts		100.0 MHz/			Span 1.0 GHz
3 Marker Table Type Ref Trc M1 1 M2 1 M3 1	X-Value 5.9104 GHz 6.3225 GHz 6.0036 GHz	Y-Value -81.13 dBn -81.97 dBn -82.64 dBn	Fi	unction	Func	tion Result	

Рисунок 4-42 – Измерение не зависящего от сигнала побочного излучения испытуемого преобразователя с помощью функции спектральной маски излучения прибора FSW

5 Библиография

- 1. Руководство по эксплуатации ZVA_ZVB_ZVT_Operating.pdf, Rohde&Schwarz
- 2. Руководство по эксплуатации FSW_UserManual_en_14.pdf, Rohde&Schwarz
- 3. Руководство по эксплуатации SMB100A Operating Manual, Rohde&Schwarz
- 4. Карта применения Application Card ZVA-K9.pdf, Rohde&Schwarz
- 5. Указания по применению 1EZ58: Mixer-Measurements_ZVA-K4.pdf, Rohde&Schwarz
- 6. Указания по применению 1EZ60: Group Delay and Phase Measurement on Frequency Converters, Rohde&Schwarz
- 7. Указания по применению 1MA201: Measuring with Modern Spectrum Analyzers, Rohde&Schwarz
- 8. Руководство по эксплуатации Satellite Upconverter Type SCU/HCU, Work Microwave GmbH
- 9. Рекомендации ITU-R SM.1541-4 "Unwanted emissions in the out-of-band domain" (Нежелательные излучения в области внеполосных излучений)
- Рекомендации ITU-R SM.329-12 "Unwanted emissions in the spurious domain" (Нежелательные излучения в области побочных излучений)

6 Информация для заказа

Обратите внимание, что компания Rohde & Schwarz предоставляет полный ассортимент анализаторов цепей, генераторов сигналов, усилителей мощности, анализаторов спектра и датчиков мощности.

Дополнительную информацию об этих приборах можно получить на веб-сайте компании Rohde & Schwarz www.rohde-schwarz.com или при обращении к нашему местному представителю.

Информация для заказа продукции						
Тип прибора		Название и диапазон применения	Код заказа			
Векторные анализаторы цепей						
I	R&S [®] ZVA 8*	Векторный анализатор цепей, 300 кГц8 ГГц, 4 порта	1145.1110.10			
I	R&S [®] ZVA-K9	Измерение параметров преобразователей частоты со встроенным гетеродином	1311.3128.02			
I	R&S [®] ZVA-K4	Преобразование частоты	1164.1863.02			
I	R&S [®] ZVA8-B16	Прямой доступ к генератору/приемнику для $R\&S^{\otimes}ZVA$ 8.	1164.0209.08			
I	R&S [®] ZVA8-B21	Ступенчатый аттенюатор генератора, порт 1	1164.0009.02			
I	R&S [®] ZVA8-B22	Ступенчатый аттенюатор генератора, порт 2	1164.0015.02			
I	R&S [®] ZVA8-B23	Ступенчатый аттенюатор генератора, порт 3	1164.0021.02			
I	R&S [®] ZVA8-B24	Ступенчатый аттенюатор генератора, порт 4	1164.0038.02			
I	R&S [®] ZVA8-B31	Ступенчатый аттенюатор приемника, порт 1	1164.0044.02			
I	R&S [®] ZVA8-B32	Ступенчатый аттенюатор приемника, порт 2	1164.0050.02			
I	R&S [®] ZVA8-B33	Ступенчатый аттенюатор приемника, порт 3	1164.0067.02			
I	R&S [®] ZVA8-B34	Ступенчатый аттенюатор приемника, порт 4	1164.0073.02			
Датчики мощности						
I	R&S [®] NRP-Z21*	Трехканальный диодный датчик, от 200 пВт до 200 мВт, от 10 МГц до 18 ГГц	1137.6000.02			
I	R&S [®] NRP-Z4	USB адаптер(пассивный)	1146.8001.02			
Генераторы сигналов						
I	R&S [®] SMB100A*	Генератор ВЧ и СВЧ сигналов	1406.6000.02			
I	R&S [®] SMB-B101	ВЧ-тракт/частотная опция от 9 кГц до 1,1 ГГц	1407.2509.02			
I	R&S [®] SMB-B106	ВЧ-тракт/частотная опция от 9 кГц до 6 ГГц	1407.2909.02			
Анализаторы спектра и сигналов						
I	R&S [®] FSW8*	Анализатор спектра и сигналов, от 2 Гц до 8 ГГц	1312.8000.08			
I	R&S [®] FSW-K40	Измерения фазового шума	1313.1397.02			

* Также подойдут и другие модели анализатора ZVA, датчиков мощности, генераторов сигналов и анализаторов спектра и сигналов. Доступны дополнительные опции. В таблице показана минимальная конфигурация для решения рассматриваемой измерительной задачи. Чтобы получить конфигурацию с учетом всех ваших потребностей, обратитесь к нашему местному представителю.

О компании Rohde & Schwarz

Rohde & Schwarz представляет собой группу электронных компаний, предлагающую инновационные решения в следующих сферах деятельности: контрольно-измерительное оборудование, теле- и радиовещание, защищенная связь, кибербезопасность, радиомониторинг и радиолокация. Созданная более 80 лет назад эта независимая группа компаний представлена по всему миру и имеет собственную торгово-сервисную сеть более чем в 70 странах.

Компания занимает лидирующие позиции на мировом рынке в своих областях деятельности. Штаб-квартира компании расположена в г. Мюнхен (Германия). Региональные штабквартиры компании расположены в Сингапуре и в Колумбии (США, штат Мэриленд), они осуществляют управление деятельностью компании в этих регионах.

Представительство в Москве:

115093 Москва, ул. Павловская, 7, стр.1, этаж 5 тел. +7 (495) 981 35 60, факс +7 (495) 981 35 65 info.russia@rohde-schwarz.com www.rohde-schwarz.ru

Контакты в регионах

Европа, Африка, Ближний Восток +49 89 4129 12345 customersupport@rohde-schwarz.com

Северная Америка 1-888-TEST-RSA (1-888-837-8772) customer.support@rsa.rohde-schwarz.com

Латинская Америка +1-410-910-7988 customersupport.la@rohde-schwarz.com

Азия/Тихий океан +65 65 13 04 88 customersupport.asia@rohde-schwarz.com Китай

+86-800-810-8228 /+86-400-650-5896 customersupport.china@rohde-schwarz.com

Ресурсосберегающие методы проектирования

- Экологическая безопасность и экологический след
- Энергоэффективность и низкий уровень выбросов
- Долгий срок службы и оптимизированные производственные расходы

Certified Quality Management ISO 9001

Certified Environmental Management ISO 14001

Данный документ и поставляемые программы могут применяться только при соблюдении условий, изложенных в области загрузки веб-сайта Rohde & Schwarz.

 $\mathsf{R\&S}^{\circledast}$ является зарегистрированным товарным знаком компании Rohde & Schwarz GmbH & Co. KG. Товарные знаки и торговые марки принадлежат соответствующим владельцам.

Rohde & Schwarz GmbH & Co. KG Mühldorfstraße 15 | D - 81671 München Тел. + 49 89 4129 - 0 | Факс + 49 89 4129 - 13777

www.rohde-schwarz.com