Linearity Measurements on RFFE Components Application Note

Products:

- I R&S[®]FSW I R&S[®]SMW200A
- I R&S[®]FSW-K18 I R&S[®]WinIQSIM2
- R&S®Forum

Distortions caused by components in the RFFE (radio frequency front end) limit the performance and throughput of communications systems. Types of distortions include:

- AM-AM and AM-PM (complex variations of gain with amplitude)
- Non-linear frequency response (memory effect)

All RFFE components exhibit all of these distortions, only the proportions vary. In this Application Note, illustrative measurements of individual RFFE components, as well as a complete RFFE, will be made.

This is followed by the documentation of a more complete analysis, including comparison against theoretical limits, of a linearized commercial SatCom BUC product.

The R&S[®]FSW Signal and Spectrum Analyzer with FSW-K18 personality provides an extremely fast, flexible and easy-to-setup-and-use environment for characterization of distortions of RFFE components such as amplifiers, mixers, filters or complete frequency-converting receive or transmit frontends

Note:

Please find the most up-to-date version of this document on our homepage :

http://www.rohde-schwarz.com/appnote/1MA299

Application Note Gareth LLOYD 3.2017 - 1MA299_1e

Table of Contents

1	Introduction	4
1.1	Background	4
1.2	Reader's Guide	5
2	Getting Started	6
2.1	Bill of Materials	6
2.2	General Procedure	6
3	Mixers, Filters and Amplifiers	10
3.1	Filter	10
3.2	Mixer	13
3.3	Cascade of Mixer & Filter	17
3.4	The Complete Tx RFFE: Mixer, Filter and Amplifier	19
4	Measurement of an Off-The-Shelf RFFE	22
4.1	Background	22
4.2	Reference Performance Calculation	22
4.3	Measurement of DUT PSat (Saturated Power)	24
4.4	Measurement of Raw and Linearized DUT Linearity	25
4.5	Key SCPI Commands	26
5	Ordering Information	27
6	Appendices	28
6.1	Forum Script Example	
6.2	Signal File Generation	
6.2.1	Background	
6.2.2	Use of WinIQSIM2	
6.2.3	SMW Built-in Custom Waveform Generator	31
6.2.4	Using MATLAB	31
7	Glossary	33

This application note uses the following abbreviations for Rohde & Schwarz products:

- R&S[®] is a registered trademark of Rohde & Schwarz GmbH und Co. KG. ı
- The R&S[®]FSW Signal and Spectrum Analyzer is referred to as FSW. L
- The R&S®SMW200A Vector Signal Generator is referred to as SMW. I.
- The R&S®WinIQSim2 Simulation Software is referred to as WinIQSim2. L
- The R&S[®]Forum software tool is referred to as Forum. I.

Rohde & Schwarz[®] is a registered trademark of Rohde & Schwarz GmbH & Co. KG.

MATLAB® is a registered trademark of The Mathworks, Inc. Mini-Circuits® is a registered trademark of Mini-Circuits, Inc. K&L Microwave® is a registered trademark of K&L Microwave, Inc.

1 Introduction

1.1 Background

Distortions caused by components in the RFFE limit the performance and throughput of communications systems. Types of distortions include:

- AM-AM and AM-PM (complex variations of gain with amplitude)
- Non-linear frequency response (memory effect)

All RFFE components exhibit all of these distortions. Only the proportions vary. Examples of RFFE components include mixers, amplifiers and filters.

In this Application Note, the exemplary measurement of each will be illustrated individually, along with a complete RFFE.

Historically, distortion specification and measurement was performed using a potpourri of metrics including, for example:

- P-1dB (the one dB gain compression point)
- IM3 (Two-tone Third Order Intermodulation level)
- IP3 (Third Order Intermodulation Intercept)

Such specification approaches served the industry very well, resulting in products that were robust, if a little power hungry.

Achieving optimum performance is increasingly important. While this may mean widening RF bandwidth for a given RFFE, for mobile and battery operated equipment, time between recharge events has become the most critical differentiator. For static equipment, overall power wasted (and therefore heat generated) is key alongside bandwidth.

Linearization, and especially digital pre-distortion (DPD), has become increasingly adopted across a range of radio platforms. Heavy investment in the R&D of DPD, especially in cellular infrastructure industries, helped to boost knowledge and awareness. Subsequently, DPD can almost always be found in radio transmitters of systems most sensitive to energy-use and/or heat dissipation, including satellite communications equipment and cellular handsets.

Specification and design of RFFE for linearized applications is different to that historic open-loop design. In predictive linearization architectures, such as DPD, it is usually more important for the DPD to be able to estimate the RFFE distortion, than to have good open-loop linearity; estimation accuracy decides the ultimate system linearity.

With up to 2 GHz internal modulation bandwidth, the R&S[®]SMW200A is the Vector Signal Generator for the most demanding applications. As a result of its baseband flexibility, RF performance and highly intuitive operation, it is the perfect tool for generating complex, digitally modulated signals of utmost quality.

The high-performance FSW Signal and Spectrum Analyzer was developed to meet demanding customer requirements. Offering low phase noise, wide analysis bandwidth

and straightforward and intuitive operation, the analyzer makes measurements fast and easy. Models ranging from 8 to 85 GHz on the same input are currently available

The dedicated option FSW-K18 has been developed to provide a valuable and easyto-use insight into the distortion characteristics of the RFFE and its building blocks.

1.2 Reader's Guide

Chapter 2 presents a guide to getting started. The powerful FSW-K18 personality may be used simply by connecting the SMW and FSW instruments together via a LAN. The FSW-K18 enables a plurality of parameter sweep measurements to automatically be made. A step-by-step guide to manually setting up measurements and environments is supported with screenshots.

In Chapter 3, example measurements are done on some of the most common RFFE components: mixers, filters and amplifiers. Illustrative distortions for each are shown. The devices are then combined in cascade to form a frequency converting RFFE.

In Chapter 4, measurements (including linearization by DPD) are made on an integrated, off-the-shelf SatCom BUC (block upconverter). A methodology for calculating the theoretical performance limit is presented. This allows a comparison of linearized performance not just with the open-loop device, but also shows how much performance potential remains.

A user manual for the FSW-K18 option used in this paper may be downloaded here.

2 Getting Started

2.1 Bill of Materials

The FSW-K18 measurement application was designed to enable operation of the measurement setup from a single GUI. This application note also provides tips on how to override this single-GUI aspect for some special use cases. The minimum setup required to test with the FSW-K18 personality is as follows:

- FSW with option FSW-K18
- SMW (the K541 option supports instrument based DPD, if required)
- Switch or Router (not shown), plus LAN cabling

The connection concept is shown in Fig. 2-1.

Fig. 2-1:-K18 test setup

The process by which the system operates is thus:

- 1. The SMW generates a test signal, which may be defined by the user, which is applied to the RFFE input.
- 2. The FSW measures the output of the RFFE.
- 3. The FSW-K18, using knowledge of both the input and output signal, compares both to calculate the transfer function of the RFFE.

2.2 General Procedure

After connection of the equipment described in 2.1, it may once be desirable to press the "Preset" button on the instrument front panels.

On the FSW front panel, press the "Mode" button, and select the "Amplifier" option.

Select the "Amplifier" option, and the FSW-K18 personality will be invoked (Fig. 2-2).

Ref Level 0.00 dBm Att 10 dB En	rum X Amp Capture eq 21.5 GHz Meas BW	lifier ╿ 図 Time 1 ms TTS V 25.6 MHz SRate	32 MHz			l
Att 10 dB Fro YIG Bypass	eq 21.5 GHZ Meas BV	V 25.6 MHZ SRate	8 32 MHZ			
I Magnitude Capture RF						•1 (
odbm Ref. 0.000 dB	3m-					
10 dBm						
20 dBm						
30 dBm						
40 dBm						
-50 dBm						
co.dom						
60 dBm	and induscribed by fathering a diffe	والالالالا والمعادية والمنافية والمنافية والمنافعة والمنافعة والمنافعة والمنافعة والمنافعة والمنافعة والمنافعة	فتحا العرجالة ومراكلا فالله والمحالة والمحالة والمحالة	معوالكا ويقصاه بلبري بالرافع	بالمصريقاته والمرابطين	and the design of the second state of the second
		●1 Meas●2 Mod●3	100.0 µs/ Ref 4 AM/AM		low hit	1.0 ab 1 Clrw●2 Mod●Ideal
Spectrum FFT		●1 Meas●2 Mod●3			low his	
Spectrum FFT		●1 Meas ●2 Mod ●3	Ref 4 AM/AM		low his	
3 Spectrum FFT 100 dBm 120 dBm		●1 Meas●2 Mod●3	Ref 4 AM/AM		ow his	
3 Spectrum FFT		●1 Meas ●2 Mod ●3	Ref 4 AM/AM		low his	
2 Spectrum FFT 100 dBm 120 dBm 140 dBm 160 dBm 180 dBm 180 dBm			Ref 4 AM/AM -10 dBm -30 dBm -50 dBm -70 dBm -90 dBm			ati 1 Clrw • 2 Mod • Ideal
3 Spectrum FFT 100.dBm 120.dBm 140.dBm 160.dBm 180.dBm 160.dBm -16.0 MHz	3.2 MHz/	16.0	Ref 4 AM/AM -10 dBm -30 dBm -50 dBm -70 dBm -70 dBm -90 dBm -100.0 dBm		10.0 dBm/	an 1 Cirw e 2 Mod e Ideali
0.0 s 3 Spectrum FFT 100 dBm 120 dBm 120 dBm 140 dBm 160 dBm 150 dBm 150 dBm 150 dBm 5 Time Domain	3.2 MHz/		Ref 4 AM/AM -10 dBm -30 dBm -50 dBm -70 dBm -90 dBm -100.0 dBm Ref 6 AM/PM vs	Input Power		an 1 Cirw e2 Mode Ideali
8 Spectrum FFT 100.08m 120.08m 140.08m 140.08m 160.08m 180.08m 180.08m 101.00MHz 50 Time Domain 100	3.2 MHz/	16.0	Ref 4 AM/AM -10 dBm -30 dBm -50 dBm -70 dBm -90 dBm -100.0 dBm Ref 6 AM/PM vs		10.0 dBm/	an 1 Cirw e 2 Mod e Ideali
B Spectrum FFT 100 dBm 120 dBm 140 dBm 160 dBm 180 dBm 180 dBm 180 dBm 180 dBm 100 dBm 100 dBm 180 dBm 180 dBm 100 dBm 100 dBm 100 dBm 100 dBm 100 dBm 100 dBm	3.2 MHz/	16.0	Ref 4 AM/AM -10 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -90 dBm -100.0 dBm Ref 6 AM/PM vs -30 ° -30 °		10.0 dBm/	an 1 Cirw e 2 Mod e Ideali
3 Spectrum FFT 10.0 & Amount of the second s	3.2 MHz/	16.0	Ref 4 AM/AM -10 dBm -10 dBm -30 dBm -50 dBm -70 dBm -90 dBm -90 dBm -90 dBm Ref 6 AM/PM vs -30 ° -50 °		10.0 dBm/	an 1 Cirw e 2 Mod e Ideali
Spectrum FFT 100.48m 120.08m 120.08m 120.08m 120.08m 160.08m 160.0MHz Time Domain 100 20	3.2 MHz/	16.0	Ref 4 AM/AM -10 dBm -10 dBm -30 dBm -50 dBm -90 dBm -90 dBm -90 dBm -90 dBm MHz -100.0 dBm Ref 6 AM/PM vs -50 ° -50 ° -70 ° -70 °		10.0 dBm/	an 1 Cirw e 2 Mod e Ideali
3 Spectrum FFT 100.08m 120.08m 120.08m 140.08m 160.08m 180.08m 180.08m 5 Time Domain 00 20	3.2 MHz/	16.0 16.0 16.0	Ref 4 AM/AM -10 dBm -10 dBm -30 dBm -50 dBm -70 dBm -90 dBm -90 dBm -90 dBm Ref 6 AM/PM vs -30 ° -50 °	Input Power	10.0 dBm/	an 1 Cirw e 2 Mod e Ideali

10:15:52 19.12.2016

Fig. 2-2: FSW with FSW-K18 initialized

Press the "Input/Output" soft key, the following dialog (Fig. 2-3) will appear on the screen.

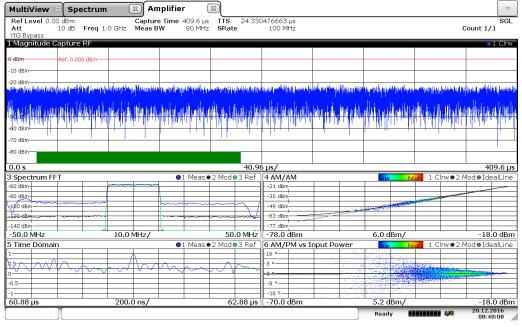
Input Source Frequency Amplitude Output Generator Configuration Generator IP Address Image: Configuration Generator IP Address Image: Configuration Image: Configuration RMS Level Image: Configuration Image: Configuration Generator Level Offset Image: Configuration Image: Configuration Attach to FSW Frequency Image: Configuration Image: Configuration Reference Frequency Image: Configuration Image: Configuration	t Probes Generator Setup t Path RF Path BB Segment Image: Comparison of the second	A • • • • • • • • • • • • • • • • • • •	
Configure all Settings from Generator	Upload all Settings	to Generator	
Generator Details	16.0 MHz -100.0 dBm 	10.0 dBm/	0.0 de
	70 °		

Fig. 2-3: Configuring the FSW-K18 - "Input/Output" dialog box.

Select the "Generate Own Signal" tab (Fig. 2-4). This feature will create a multicarrier signal with OFDM characteristics, for characterization of the DUT.

MultiView 😁	Spectrum 🖾	Amplifier 🚦	X					
Ref Level 0.00	Reference Signal Capt	s BW 80 M		MHz		- X		
YIG Bypass	Current Generator	Waveform	Custom Wave	form File	Generate Own S	ignal		1 Clrw
-0 dBm	Generate Own Referen	(]	
-10 dBm	Generate Own Referen	ice signal						
-20 dBm	Clock Rate	100.0 MHz	Puls	e Duty Cycle	100.0 %			
-30 dBm	Signal BW	20.0 MHz	Ram	p Length	10			
-40 dBm	Signal Length	16384	Wav	eform File Nar	me AmpTools			
ante of panels celor.	Target Crest Factor	10.0 dB	Note	h Position	0.0 Hz		, tradict the state of a public decision and	ateritopi aterit
lag dem <mark>ti da ba</mark> t	Notch Width	0.0 Hz		نىڭ دۆلمانلىلە بىر أىلار مەربىيە مەربىيە مەربىيە	Open Generat	or Setup		<u>dilitina</u>
0.0 s		Gene	rate and Load S	Signal and Exp	ort it to Generator		409	9.6 µs
3 Spectrum FFT	Currently Active Refere	01 Mee	ise 2 Mode 3 Ro	1 AM/AM		- www	1 Clrw●2 Mod●Idea	alLine
-60 dBm			• •	-10 dBm	1600.1			
100 dBm	Sample Rate: Waveform File:	100 MHz C:\R_S\Ins	tr\user\ET\File	ber Of Samples\AmpTools.v				
-120 dBm		. – .		470 dBm				
-140 dBm	R8	S Generato	r		S FSW	gnal		
-50.0 MHz 5 Time Domain			LAN	- 16 AM/		erated	U.U. I Clrw●2 Mod●Idea	0 dBm
					by	K18		
0.5 M When					RF . FSW	v-к18		
	Generator	Generation			rontend			
-0.5				70 °-				
-1 46.75 μs	200.0 ps/		48.75 (s -100.0 dBr	m	10.0 dBm/	0.0	0 dBm
		Sync	not found			Measuring	20.12.20	016
								0:34 //
08:39:34 20.12	2.2016							

Press the "Generate and Load Signal and Export it to Generator" key.


Fig. 2-4: Configuring the FSW-K18 - Exporting the test signal from the FSW, to the SMW, over LAN.

Re-open the "Input/Output" tab, and switch the "Generator RF Output" button to the "On" state (Fig. 2-5).

Input Source (I	Frequency	Amplitude Output	Probes	Generator 9	Setup	B2000			• 1
Generator Configu	ration								
Generator IP A	ddress 🔵	10.85.0.94	Path F	٦F		A	:	• de la contraction	- Martin Martin
RMS Level	insi di In 🗭	-30.0 dBm	Path E						Anti-Anto-A
Generator Leve	el Offset 🛛 🔵	0.0 dB		ЭВ		A	1		
Attach to FSW F	requency	On Off	Segm	ent	•	0			
Center Frequer	ncy 🔵	1.0 GHz	40.9	Attenuation	•	0.0 dB] 1 Clrw●2	409 Mod • Idea
Reference Frec	juency 🔵	Internal		rator RF Outpu	ut 🔵	On	Off		
Config	ure all Settings	from Generator		Upload all	Setting	s to Genera	ator	\exists	
Generator Details	10.0 M	Hz/	50.0 MH2	<mark>∬ -78.0 dBm</mark>	_	1	6.0 dBm/		-18.0
Name	SMV	•1 Meas • 2 W200A	Mod • 3 Ref					nh 1 Clrw●2	Mod●Idea
Serial Number		2.0000K02/101102						i. Addition to a	
Firmware Version	21	19.15-3.50.103.51	V 1 V ~~~~					and the second second	distantion

08:39:48 20.12.2016

Fig. 2-5: Configuring the FSW-K18 - Switching on the test signal to the DUT

Close the dialog box to reveal the live measurement (Fig. 2-6).

08:40:08 20.12.2016

3 Mixers, Filters and Amplifiers

In this section, an illustrative up-converting RFFE will be built using off-the-shelf components; a mixer, filter and amplifier to demonstrate some of the FSW-K18 measurements and typical distortion sources.

The expansive FSW-K18 measurement suite provide many useful measurement features. In this section, the following selection will be used:

- I AM-AM
- Gain Compression
- AM-PM
- Result Summary

3.1 Filter

An RF filter is a component that, in the frequency domain, passes chosen or designed frequencies whilst blocking (usually by reflecting) others.

The filter DUT used is the K&L bandpass 3FV50-1950-T80-NP/N (Fig. 3-1). This filter has a nominal 3dB bandwidth of 80 MHz, with passband centered at 1950 MHz.

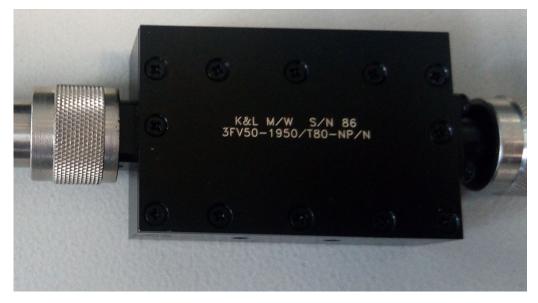


Fig. 3-1: Band Pass Filter DUT from K&L

The SMW output power level is set to a nominal 0 dBm. In order to simplify operation as much as possible, this is done from the "Input/Output" softkey in the FSW-K18 application, selecting "Generator Setup" tab, modifying the "RMS Level" value (Fig. 3-2).

put/Output 10 dB Freq 1. Bypass	.99 GHz Meas BW 80 MHz	SRate	100 MHz		l.		unt 1/1
Input Source (Frequ	ency (Amplitude (Output	Probes	Generator Setup	B2000	hiah 1	Cirw • 2 Mc	d●Idea
Generator Configuration							**
			12 dBm				
Generator IP Addres	is 🔵 10.85.0.94	Path I	RF-18 dBm	A	\$		
RMS Level	0.0 dBm						
		Path I	3B 30 dam	A			
Generator Level Offs	et 🔵 0.0 dB						
Attach to FSW Frequ	ency On Off	Segm	ent 2 dBm	0			
B			48 dBm	0.0 dB			
Center Frequency	5.20Bm 1.99 GHz	LLO dBm	Attenuation	U.U dB			12.0
/PM vs Input Power			ator RF Output	On	Off		
Reference Frequence	y 🔵 Internal	• Ocher	Raw Model EVM			68.00 8 67.251	%
				0.105			Hz
Configure al	l Settings from Generator		Upload all Setting	s to Generator		Мах	Un
Generator Details			Power In	-43.74	-0.00	9.98	dBr
						4.79	dBr
Name Serial Number	SMW200A 1412.0000K02/101102						dE
Firmware Version	3.1.19.15-3.50.103.51						dE
	5.1.19.15 5.50.105.51						Vo
							0
							dB

11:18:20 20.12.2016

Fig. 3-2: Configuring the FSW-K18 - Modifying output level of the SMW from the FSW.

Note that in that same dialog, that the "Attach to FSW Frequency" is toggled to "On". Therefore, the FSW may directly control the frequency of the SMW too.

A manual frequency sweep of the filter, from the center of the band, to the band-edge, with the OFDM-like signal (see 2.2) yields an interesting, but not surprising, result.

As the filter is stimulated at frequencies approaching the band-edge, the filter becomes increasingly selective.

With that selectivity and roll-off, increasing amounts of linear distortion appear (Fig. 3-3). This is manifest as increases in "Raw EVM", "AM/AM Curve Width" and "AM/PM Curve Width".

Indeed, these tabulated values are accompanied by an increase in the dispersion observed in the plots.

The greater the selectivity or roll-off experienced by the signal (e.g. variations in complex gain over the frequency range), the greater the degradation in these quantities. All this is in spite of the expected infinitesimal non-linear distortion.

	Bm)dB Freq 1.95 G	Capture Tim Hz Meas BW	e 409.6 µs 80 MHz	TTS 35.0 SRate	39920476 µs 100 MHz			Cour	nt 1/1
G Bypass Gain Compress	ion vs Input Pov	ver tow	high	Clrw - 2 Mod	4 AM/AM	low	high 10	lirw•2 Mod	• IdealL
iB					7 dBm				
1B					0 dBm				
iB					-7 dBm				_
в					-14 dBm				
dB					-21 dBm	_			
dB	CALCULATION AND AND AND AND AND AND AND AND AND AN	No. of the local data in the local data			-28 dBm				_
dB					-35 dBm	~			
dB					-42 dBm				_
D dB					-49 dBm				
1.0 dBm		2 dBm/		11.0 dBm	-48.0 dBm	6.0 dt			12.0 c
M/PM vs Inp			Clow • 2 Mo	d⊜IdealLine	1 Result Summary	6.0 di	smy		12.0 0
					Raw EVM	0.002	0.475	1.655	96
•					Raw Model EVM	0.004	0.472	1.664	96
· · ·			+ +		Frequency Error		-4.465		Hz
					Power	Min	Current	Мах	Unit
	Sec. Sec.	Section and			Power In	-43.74	-0.00	9.98	dBm
1. 1. 1.	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Power Out	-50.17	-2.71	7.24	dBm
•	111 111				Gain		-2.70		dB
•					Crest Factor Out		9.94		dB
2 0 .					AM/AM Curve Width		0.001		Volt
5 °					AM/PM Curve Width		0.193		0
1.0 dBm	5	2 dBm/	_	11.0 dBm	3dB Compression Point				dBm

11:12:17 20.12.2016

Ref Level 0.00 dBm Att 10 dB	Capture Time 4 Freq 1.97 GHz Meas BW	09.6 µs TTS 2.167058938 µs 80 MHz SRate 100 MHz			Coun	SGI it 1/1
Gain Compression	vs Input Power	iah 1 Cirw 2 Mod 4 AM/AM	low	high 1 (Cirw • 2 Mod	IdealLine
dadadadadadada		6 dBm- 0 dBm- 1 d dBm- 1 2 dBm- 1 2 dBm- 1 2 dBm- 1 4 dBm- - 34 dBm- - 36 dBm-				
41.0 dBm	5.2 dBm/	REF -42.0 Bm	6.0 df			12.0 dBr
AM/PM vs Input F		• 2 Mode IdealLine 1 Result Summ		smy		12.0 dBr
		Raw EVM	0.007	2.262	7.119	96
•		Raw Model EVM	0.030	2.366	14.835	96
0	1 A. M. 450	Frequency Error		-6.025		Hz
°	The second second second	Power	Min	Current	Мах	Unit
°		/ Power In	-43.74	-0.00	9.98	dBm
· .		Power Out	-42.53	-2.77	7.12	dBm
°		Gain		-2.76		dB
·		Crest Factor Ou	t	9.89		dB
2 0		AM/AM Curve Vi	/idth	0.003		Volt
.6 °		AM/PM Curve W	idth	0.936		•
11.0 dBm	5.2 dBm/	11.0 dBm 3dB Compressio	n Point			dBm

11:12:54 20.12.2016

	oectrum 🖾							4
Ref Level 0.00 dBm Att 10 dB /IG Bypass	C Freq 1.99 GHz M	apture Time 409.6 µs leas BW 80 MHz	TTS 12.51 SRate	2771718 µs 100 MHz			Coun	s0 it 1/1
Gain Compression	vs Input Power	low high	Cinw - 2 Mod	4 AM/AM	low	high 10	lirw • 2 Mod •	IdealLin
dB	A Standard Com			0 dBm				
	2 1 1 1 3 2 9 V	5 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					Charles and	10
dB		Sector 1		-6 dBm		and a state		
dB		915 (25 A		-12 dBm	S. 87.89		1	
dB		N SALESAAN	Sector.	-18 dBm				
+ dB	1.		and the second	-24 dBm		A CONTRACTOR	+	
i dB				-30 dBm		N 947 111		
I dB				-36 dBm	in the second	100 C		
l0 dB				-42 dBm	1.11			_
12 dB				-48 dBm			\vdash	_
41.0 dBm	5.2 dBm		REF 11.0 dBm	-48.0 dBm	6.0 dE			12.0 dE
AM/PM vs Input P				1 Result Summary	6.0 dt	smy		12.0 di
AM/ FM VS Input F	l la collec		No ToeaiLine	Raw EVM	0.171	20.319	68.008	%
5 °			Gia di si	Raw Model EVM	0.109	20.519	67.251	96
2 0				Frequency Error	0.109	-5.922	07.231	Hz
°				Power	Min	Current	Max	Unit
•				Power In	-43.74	-0.00	9.98	dBm
o			- Lat	Power Out	-43.74	-0.00	4.79	dBm
				Gain	-44.79	-4.90	4.79	dBm
2 .				Crest Factor Out		9.68		dB
16 0			See.	AM/AM Curve Width		0.018		Volt
		Ser Contraction	930 - C	AM/PM Curve Width		9.063		-
41.0 dBm	5.2 dBm	/	11.0 dBm	3dB Compression Point				dBm

11:13:56 20.12.2016

Fig. 3-3: Frequency sweep characteristic of the Band Pass Filter DUT with center frequencies 1.95, 1.97 and 1.99 GHz. Note the increasing dispersion, spreading in the AM-xM scatter plots, as the band edge is approached.

3.2 Mixer

An RF mixer is a multiport device that shifts a signal from one frequency to another. Usually there are 3 ports, RF (a signal port, usually the highest frequency), LO (local oscillator, whose frequency sets the difference between the RF and IF signals) and IF (whose signal is the almost the same as the RF port, except at a usually lower frequency).

The mixer used for up-conversion in the RFFE is the off-the-shelf ZX05-C60MH-S+ (Fig. 3-4), from Mini-Circuits.

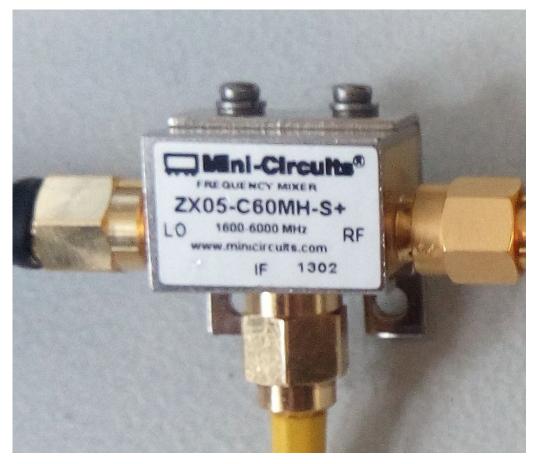


Fig. 3-4: Mixer DUT, the ZX05-C60MH-S+ from Mini-Circuits

It will be configured with a 1.7 GHz LO, which will be sourced from the 2nd RF output of the SMW. The IF frequency range will be 210~290 MHz thus placing the high-side RF signal in the 1910~1990 MHz band.

In this example, low-side up-conversion products will appear in the frequency range 1410~1490 MHz. Those will be rejected by the band pass filter shown in 3.1.

With this FSW-K18 platform, it is possible for the designer to investigate a range of LO/IF frequency pairs, as well as drive level. For example, the designer may investigate the use of a high sided up-conversion (which with this specific mixer would allow a much greater range of choice of LO/IF variants to be investigated).

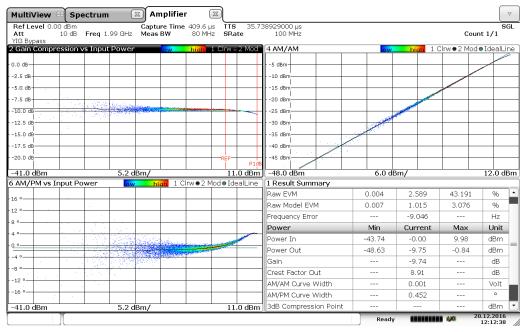
To test this frequency converting device, some configuration changes need to be made.

Firstly, the "Input/Output" softkey menu of the FSW-K18 application, "Generator Setup" tab, set the "Attach to FSW Frequency: to "Off" (Fig. 3-5).

nput Source Frequ	ency Amplitude Outp	ut Probes	Generator Setup	B2000		Clrw●2 Mc	d 🛛 Idea
Generator Configuration			-6 dBm-	(_
			12 dBm				
Generator IP Addres	s 🔵 10.85.0.94	Path I	۲೯ -24 dBm	A	\$		
RMS Level	0.0 dBm						
Generator Level Offs	et 🔵 0.0 dB	Path	3B -36 dBm	A			
Cenerator Eeverons		Seam	ent a dam	0			
Attach to FSW Freque	ency On Off		54 dBm				
Center Frequency	5.20 m 1.99 GHz	Digita	Attenuation 🛛 🔵	0.0 dB			12.0
PM vs Input Power	low bize LUEW Z		1 Result Summary				
		• Gene	ator RF Output 🛛 🔵	On	Off	38.497	%
Reference Frequency	/ 🔵 Internal	¢ Gener	I COW LYNN				-
Reference Frequency			Raw Model EVM	0.005	1.024	3.238	
	Settings from Generator		I COW LYNN	0.005	1.024	3.23 3 	H:
Configure al			Raw Model EVM	0.005 to Generator	-0.00	3.28 8 Max 9.98	H: Un
Configure all	Settings from Generator		Raw Model EVM		-0.00 -9.96		H: Un dBi
Configure all Generator Details Name	SMW200A		Raw Model EVM Upload all Settings	-43.74			H: Un dBi dBi
Configure al Generator Details Name Serial Number	SMW200A 1412.0000K02/101102		Upload all Settings	-43.74			H: Un dBi dBi dBi
Configure all Generator Details Name	SMW200A		Upload all Settings Dever In Power Out Gain	-43.74			H: Un dBi dBi dBi dBi dBi
Configure al Generator Details Name Serial Number	SMW200A 1412.0000K02/101102		Down China C	-43.74			% Hz dBr dBr dBr dE dE Vo

Fig. 3-5: Configuring the FSW-K18 - Decoupling the SMW and FSW operating frequencies to test frequency conversion devices.

On the SMW, exit "Remote" mode (e.g. by pressing "Remote" softkey in the top left of the display) and set-up the 2 channels for the frequency and power combinations given (Fig. 3-6):


Fig. 3-6: Configuring the SMW - Modifying the two SMW output frequencies and levels to drive the Mixer DUT

The output level of the SMW Channel A has been adjusted on the SMW to create 1dB Gain Compression on the FSW-K18. The onset of 1dB Compression can be seen in the Gain Compression curve, shown in the top left of Fig. 3-7, thus:

lultiView	dBm		Captu	nplifier Ire Time		⊠ s T	TS 2.409	9135050 µs					s
tt G Bypass	10 dB Fre	eq 1.95 GHz	Meas	BW	80 MĤ	z S	Rate	100 MHz				Cour	nt 1/1
Gain Compre	ssion vs Iı	nput Powe	ř,	ow	high	1 Cln	w⊜2 Mod	4 AM/AM		low	high 1	Clrw●2 Mod	● IdealLi
) dB								6 dBm					\checkmark
5 dB								-12 dBm					
0 dB								-18 dBm				\leftarrow	
5 dB								-24 dBm					
0.0 dB			A dense se s					-30 dBm			<u> </u>		
2.5 dB		1999 - E. M. 200						-36 dBm					
5.0 dB			-					-42 dBm					
7.5 dB				ļ				-48 dBm					
D.O dB				ļ		RE	F	-54 dBm					
1.0 dBm			dBm/				P1dB	-48.0 dBn		6.0 c	lDm /		12.0 d
AM/PM vs In	nut Powe			ab 1 C	rwee 2 N		IdealLine	1 Result S		0.01	ыну		12.0 u
						104.0		Raw EVM	arrintar y	0.002	2.349	38,497	%
°	1		-					Raw Model	EVM	0.005	1.024	3.238	%
°			-					Frequency	Error		-8.517		Hz
»	1.1	Sec. 15	-					Power		Min	Current	Мах	Unit
·	in the state		Although	and and and			-	Power In		-43.74	-0.00	9.98	dBm
· · · ·	1		1		OF STREET			Power Out		-55.11	-9.96	-0.98	dBm
°		18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4220					Gain			-9.96		dB
°	1.1		1					Crest Facto	or Out		8.98		dB
2 •	1.1	-	1					AM/AM Cur	ve Width		0.001		Volt
6 °			+					AM/PM Cur	ve Width		0.424		0
1.0 dBm		5.2					11.0 dBm	0.00.0	ession Point				dBm

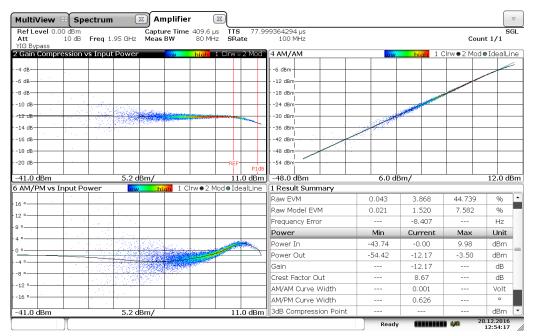
11:37:49 20.12.2016

Fig. 3-7: Mixer DUT operating with signal peak envelope power (PEP) set to one dB gain compression point (P-1dB) at 1.95 GHz

Modifying the IF frequency on the SMW from 250 MHz to 290 MHz, increases the RF output frequency to 1.99 GHz. The output measurement (Fig. 3-8) is thus:

12:12:39 20.12.2016

Fig. 3-8: Mixer DUT operating with signal peak envelope power (PEP) set to one dB gain compression point (P-1dB) at 1.99 GHz


Unlike the filter, the mixer has exhibited little change in its characteristics, by moving from 1.95 GHz to 1.99 GHz.

3.3 Cascade of Mixer & Filter

With the Mixer and Filter components individually verified, they may now be connected together (shown in Fig. 3-9).

Fig. 3-9: Cascade of mixer and band pass filter

Measurements at IF frequencies of 250 MHz and 280 MHz, corresponding to RF frequencies of 1950 MHz and 1980 MHz yields (Fig. 3-10):

12:54:17 20.12.2016

12:54:55 20.12.2016

Fig. 3-10: Cascade of Mixer and Band Pass Filter, operating with signal peak envelope power (PEP) set to one dB gain compression point (P-1dB) at 1.95 GHz and 1.98 GHz, i.e. filter band center and filter band-edge

It is interesting to note that the composite distortion of Fig. 3-10 comprises linear and non-linear distortion; but that in this case, they are mostly generated by different components.

- The non-linear distortion, causes variations in Gain Compression and AM-PM, most clearly seen in the 1950 MHz plot (top). It is broadly equal at both measurement frequencies
- The linear distortion, manifest as a spreading of the measurement points in the ydomain, is mostly caused by the filter. Its effect is much more significant in the 1990 MHz plot (bottom). The filter's frequency response is rolling off at the bandedge, causing variations in transfer gain and phase that are much more significant (bottom) than the in-band gain/phase ripple (top).

3.4 The Complete Tx RFFE: Mixer, Filter and Amplifier

The power amplifier (Mini Circuits ZHL-42) is added to the output of the filter and the RFFE is complete (Fig. 3-11).

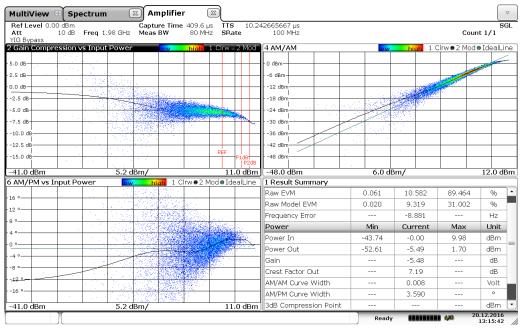


Fig. 3-11: The complete, discrete, RFFE, comprising a cascade of mixer, band pass filter and power amplifier.

Measurement, on the cascade, is now performed at 1950 MHz and 1980 MHz.

ultiView 8	(.		mplifier ture Time 4	109 6 US	 TTS	54.7	37844039 us					s
	10 dB Freq 1				SRate		100 MHz				Coun	t 1/1
	ssion vs Input	t Power	ow	high 1 C	llrw © 2	Mod	4 AM/AM		low	high 1	Clrw●2 Mod €	JdealL
1B							0 dBm					
ю. IB												_
10 C 10 C												
B	1. J						12 dBm					
dB	- 11. J. W.K.	Section	+ + +				-18 dBm			with the second		
dB .							-24 dBm		- Carlor			
dB		a a construction of the second se					30 dBm	1.2	1			
dB			_				-36 dBm	A .	1			
) dB	<i>i</i>		_		REF		-42 dBm	1				
2 dB					T P1	IdB IP2dB	-48 dBm					
						РЗфВ						
1.0 dBm		5.2 dBm/				dBm			6.0 di	3m/		12.0 d
M/PM vs In	put Power	low/	high 1 Clrv	¥●2 Mod	● Idea	ILine	1 Result Summary					
°			_				Raw EVM		0.027	5.116	101.166	%
o							Raw Model EVM		0.007	1.473	6.563	%
							Frequency Error			-5.935		Hz
· · · ·		Sec. 1					Power	_	Min	Current	Мах	Unit
	1.1.1	1991 N. 1994 N. 19	and the		-	**	Power In		-43.74	-0.00	9.98	dBm
	1000				-	-	Power Out		-43.10	-4.71	2.10	dBm
<u> </u>	1. A.				-+		Gain			-4.71		dB
• <u>·</u>			2-2-2-2 2-2-2-2				Crest Factor Out			6.81		dB
2 •	1 N 18.						AM/AM Curve Width			0.002		Volt
, •			+				AM/PM Curve Width			0.554		0
						dBm	3dB Compression Po			9.82	-	dBm

13:16:17 20.12.2016

13:15:43 20.12.2016

Fig. 3-12: Measurement of the complete RFFE, at 1.95 GHz and 1.98 GHz, with input power set to generate approximately 1dB gain compression at the mixer output.

Note in the measurement results for the complete RFFE (Fig. 3-12), that the overall gain compression (non-linear distortion) for the RFFE is at least 2 dB. With the input power levels used, the mixer accounts for about 1 dB of that compression (see Fig. 3-10).

This RFFE chain therefore is relatively lean and efficient, with all substantially nonlinear components contributing to the non-linear distortion. This would appear to lend itself to a cost and power efficient solution (assuming relevant yield analyses were satisfactory), particularly so for linearization.

4 Measurement of an Off-The-Shelf RFFE

4.1 Background

In this chapter, measurements will be made on an integrated, off-the-shelf, RFFE. This RFFE comprises at least one of each of the basic RFFE building blocks, in a cascade similar to that demonstrated in section 3.4.

There are three steps to the process of assessing RFFE linearity performance and capability:

- 1. Establish the performance of a reference RFFE (usually a hard clipper) to the modulation and linearity measurement
- 2. Measure PSat (the saturated output power of the DUT)
- 3. Measure linearity of the DUT (with and without Linearization)

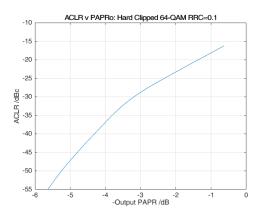
To demonstrate this principle, a NJR8302 Ku-band SatCom BUC will be tested with 64 QAM modulation (roll-off = 0.1).

Linearity of the BUC will be tested with, and without, DPD.

In which case, the DPD model in FSW-K18 is limited to the quasi-default settings presented in Fig. 4-1.

MultiView	Measurement Settings × K18	3Distortion 🕴	×		•		_ (=	x		Reference
Ref Level 2 Att	Modeling DPD PA Env	elope/Supply	ACLR Settings	Douror	Setting	s Paran	notor			
YIG Bypass 1 Result Sum	PA EIIV	elope/supply	and the second second liter	Power	Setting	s Palal	ietei			Input/ I Output
Modulation	ccuracy Min Currer		2 ACLR							Output
Raw EVM	Modeling 0.011 3.478	On	Off							Data
Raw Model E	Modeling Sequence 2.775	AM/AM first	M/PM first							Acquisition
Frequency En	or47.92							Ba	nced	Sync/ Error Est/ Comp
Power	AM/AM Order (0 to 18)	1-7	10					2.08	8 dB	Comp
Power In	-66.22 -30,00							0.9	7 dB	Meas
Power Out	AM/PM Order (0 to 18) 70	0-7								
Gain	54.70 Modeling Level Range	15.0 dB								Gen and load
Crest Factor (AM/AM Curve	0.69 Num									Gen and load Predistorted Waveform
	No of Modeling Points	100								
4 Gain Comp	ression vs Input Powe low							od • Id	alLine	DPD On Off
65.0 dB	Modeling Scale	Logarithmic	Linear							
- 62.5 dB										Result
- 60.0 dB								Sec.		Config
- 57.5 dB									1 <u>1</u>	Display
- 52.5 dB								(Selector)		1 Config
- 50.0 dB									100	
• 47.5 dB										
- 45.0 dB										┕╸■╱≁
-67.9 dBm	4.58 dBm/							-27	0 dBm	Overview

Fig. 4-1: DPD Modeling settings for Linearization of the NJT8302 BUC


4.2 Reference Performance Calculation

The reference performance may be calculated for any linearity metric.

In this case, the reference signal is an arbitrary 10 MSym/s 64-QAM signal, generated with RRC filter with roll-off 0.1 constant. The linearity metric will be spectral regrowth, measuring power within a 10MHz channel bandwidth, located at a 12MHz offset from the carrier. Note that any, or combination of, linearity metric(s) may be used.

This signal is played through a hard clipper, and increasing amounts of clipping applied.

The result is a characteristic of spectral regrowth versus PAPRo (shown in Fig. 4-2).

Fig. 4-2: ACLR v PAPRo (spectral regrowth versus output peak-to-average-power ratio) behavior for the 64-QAM (RRC=0.1) test signal played through a hard clipper

This curve demonstrates the minimum PAPRo that can support a given ACLR (or other linearity). The difference between PAPRi (input) and PAPRo (output) represents a degradation or reduction.

The test signal itself has a PAPRi of approximately 6 dB. To be completely linear, the PAPRo must also be 6 dB (but the reverse is not true). If the DUT is completely linear, there is no distortion when the average power is at least 6dB backed off from the saturated.

Similarly, a -40 dB ACLR figure can be supported with a minimum PAPR of ~4.2 dB and the maximum average output power of the device with -40 dBc is -4.2 dB lower than PSat. Conversely, a PAPR of 4.2 dB at the device output, can support ACLRs of -40 dBc or worse.

Fig. 4-3 shows the Power v Time waveforms for the reference and a hard clipped to -40 dBc version. Note the "ZOH" (zero order hold) type waveform, created by the perfect action of the clipper.

The PEP or maximum values for the raw (input) signal and the clipped (output) signal are set to 0 dB. An inspection of the waveforms shows that there is however, a difference in the average level. In this case, the average level is approximately 2 dB higher for the clipped (output) waveform, than for the reference (input). Therefore the PAPR for input and output is different.

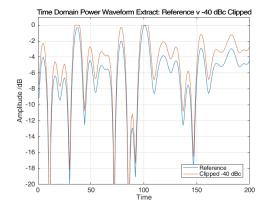


Fig. 4-3: Power v Time curves for a clean reference waveform, and the same clipped to -40 dB ACLR

With this calculation, the theoretical limit of linearization is known.

4.3 Measurement of DUT PSat (Saturated Power)

One method for assessing PSat of a device is to power sweep a representative signal through the DUT, measuring PAvg and PEP (alternatively PAPRo).

It is important to note that the PSat of a device is related to the test signal, especially its bandwidth and PAPRi. Measurement of PSat using, for example, a power swept CW tone will likely yield a different result to that of a digitally modulated signal. This does not mean that the measurement is correct, more that the device actually has a different PSat and performance for different stimulus.

The device was power swept with the modulated signal and those parameters (PAvg, PAPRo) were measured. PEP is the sum of PAvg and PAPRo at each measurement point.

The result is shown in Fig. 4-4, with the x-axis (abscissa) representing the average measured device output power level, PAvg, and the y-axis (ordinate) representing PEP = PAvg + PAPRo.

The PEP (y-axis) tends towards PSat as the input is increasingly driven. The device PSat is the maximum value measured during the power sweep (slightly more than 35 dBm).

PSat is the maximum achieved value for PEP during the measurement.

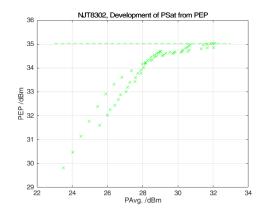
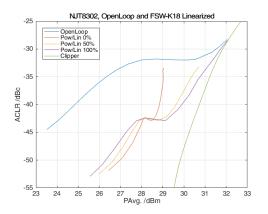


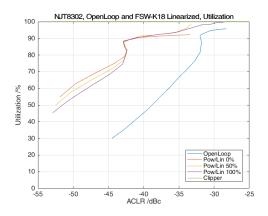
Fig. 4-4: PSat (Saturated output power) measurement of the NJT8302) with 10 MSym/s RRC=0.1 64-QAM test signal, with PAvg x-axis and PEP = PAvg + PAPRo on the y-axis.

4.4 Measurement of Raw and Linearized DUT Linearity

In this final step, a power sweep is performed, with exemplary (but not optimized) DPD performed at each power level.

The DPD is performed using the "Generate Predistorted Waveform File" feature of FSW-K18.




Fig. 4-5: Measurement of Open Loop and (Exemplary) DPD Linearized performance of the NJT8302, with 10 MSym/s RRC=0.1 64-QAM test signal

The measurement result, combined with the normalized hard clipper calculation is presented in Fig. 4-5.

From the graph it can be seen, for example, that:

 At 28 dBm, the ACLR has been improved by approximately 10 dB with the example DPD settings

- At -40 dBc, the output power has been increased by approximately 4-5dB with the example DPD settings
- A further 1-2 dB of output power could possible by achieved if linearization was made perfect AND if the resultant system could support the requisite hardclipping.
- At higher ACLR levels (~-30 dBc), then the open-loop and DPD linearized device performance asymptote, also with the (proposed) theoretical limit

Fig. 4-6: Utilization (i.e. the ratio of PEP to PSat) of the Open Loop and Linearized NJT8302 device

In Fig. 4-6, the curves demonstrate the Utilization of the NJT8302 in Open Loop and DPD Linearized forms.

At -40 dBc, the amount of device capability being used at PEP increases from ~47% to ~90%.

These observations raise a number of possibilities. For example, with Utilization increasing from 47% to 90% for a given linearity, then a ~48% smaller (and presumably cheaper and more efficient) device (with the exemplary DPD) could be used to support the same output power.

4.5 Key SCPI Commands

The most important FSW-K18 SCPI commands used in this Chapter are as follows:

CONF:DPD:TRAD 50 Sets the DPD Output Power/Linearity Trade Off to 50% (or other value in the range 0~100%).

CONF:DPD:FILE:GEN Instructs the FSW-K18 to generate the predistorted waveform files and send them to the SMW.

CONF:DPD:AMXM ON/OFF This command, sent to the FSW, will relay the instruction to the SMW to load and play the predistorted waveform file.

5 Ordering Information

The following equipment specifications represent the minimum configurations (base equipment plus options) required to support the R&S based application(s) described in this document.

Designation	Туре	Order No.		
Vector signal generator, base unit; freq.opt.& BBmodule req.	SMW200A	1412.0000.02		
Frequency range : 100kHz to 3GHz for RF path A (HW opt.)	SMW-B103	1413.0004.02		
Frequency range : 100kHz to 3GHz for RF path B (HW opt.)	SMW-B203	1413.0804.02		
Baseband main module, two I/Q paths to RF section (HW opt.)	SMW-B13T	1413.3003.02		
Baseband generator with realtime coder and ARB (HW opt.)	SMW-B10	1413.1200.02		
Signal- and Spectrum analyzer 2Hz to 8GHz	FSW8	1312.8000.08		
Power amplifier measurement application (SL)	FSW-K18	1325.2170.02		

Note:

- The SMW product line is, at the time of writing, available with 2 x 20 GHz outputs (alternatively, 1 x 40GHz)
- The FSW product line is, at the time of writing, available with 85 GHz direct input.

For more up-to-date information, visit the R&S website.

6 Appendices

6.1 Forum Script Example

Forum is a free program from R&S, based on the Python language, enabling easy scripting for automated control and test. For more information, see 1MA196.

This prototype script is used for reset and initial configuration of the test set-up.

It can, and may, be easily modified to include for example, swept variable testing etc.

The user should take care to modify the following parameters, if necessary:

- Filename of the test signal
- Frequencies for LO and IF
- IP address for the SMW

```
#
#SMW Reset and Initialization
#Reset
SMW.write("*RST")
SMW.write("*CLS")
SMW.query("*OPC?")
#Baseband configuration (Triggering, Waveform)
SMW.write(":SOURcel:BB:ARBitrary:WAVeform:SELect
'/var/user/256qam 0p1 10M'")
SMW.write(":SOURcel:BB:ARBitrary:STATe 1")
#RF configuring
SMW.write(":SOURce1:POWer:POWer 0")
SMW.write(":SOURce1:FREQ:CW 0.38 GHZ")
SMW.write(":OUTPut:STAT 1")
SMW.write(":SOURce2:FREQ:CW 1.60 GHZ")
SMW.write(":OUTPut:STAT 1")
SMW.write(":SOURce2:POWer:POWer 13")
SMW.guery("*OPC?")
#
# FSW Reset and Initialization
#Reset everything...
FSW.write("*RST")
FSW.write("*CLS")
FSW.query("*OPC?")
#Create an Amplifier Measurement Window
#Configure Measurement Window
FSW.write(":INST:CRE:NEW AMPL, 'K18 Distortion'")
FSW.query("*OPC?")
FSW.write(":LAY:REM '1'")
FSW.write(":LAY:REM '3'")
```

28

```
FSW.write(":LAY:REM '4'")
FSW.write(":LAY:REM '5'")
FSW.query(":LAY:ADD? '2', ABOV, RTAB")
FSW.query("*OPC?")
FSW.query(":LAY:ADD? '4', RIGH, ACP")
FSW.query("*OPC?")
FSW.query(":LAY:ADD? '1', BEL, AMPM")
FSW.query("*OPC?")
FSW.query(":LAY:ADD? '3', LEFT, GCOM")
FSW.query("*OPC?")
FSW.write(":LAY:REM '6'")
#Configure FSW to read reference signal from SMW
FSW.write("CONF:GEN:IPC:ADDR '10.85.0.94'")
FSW.write("CONF:REFS:CGW:READ")
FSW.query("*OPC?")
#Configure basic RF settings
FSW.write(":FREQ:CENT 1.98 GHz")
FSW.write(":INP:ATT 5dB")
FSW.query("*OPC?")
FSW.write("TRAC:IQ:SRAT:AUTO ON")
FSW.write("POW:ACH:AABW ON")
FSW.query("*OPC?")
#Configure DPD Modeling
FSW.write("CONF:MOD:SEQ PMF")
FSW.query("*OPC?")
FSW.write("CONF:MOD:LRAN 20")
FSW.query("*OPC?")
FSW.write("CONF:DPD:SHAP:MODE POLY")
FSW.query("*OPC?")
#Detach SMW frequency from FSW
SMW.write(":SOURce1:FREQ:CW 0.38 GHZ")
#Scale AMxM Plots
FSW.write("DISP:WIND4:TRAC:X:SCAL:AUTO OFF")
FSW.query("*OPC?")
FSW.write("DISP:WIND4:TRAC:X:PDIV 2DBM")
FSW.guery("*OPC?")
FSW.write("DISP:WIND3:TRAC:X:SCAL:AUTO OFF")
FSW.guery("*OPC?")
FSW.write("DISP:WIND3:TRAC:X:PDIV 2DBM")
FSW.query("*OPC?")
#Set channel bandwidths and spacings
FSW.write("POWer:ACHannel:TXCHannel:COUNt 1")
FSW.write("POWer:ACHannel:BANDwidth 10MHZ")
FSW.write("POWer:ACHannel:BANDwidth:ACHannel 10MHZ")
FSW.write("POWer:ACHannel:SPACing:CHANnel 11MHZ")
SMW.query("SYSTem:ERRor?")
FSW.query("SYSTem:ERRor?")
```

6.2 Signal File Generation

6.2.1 Background

In addition to the method for creating a signal in the FSW, the user may also generate their own test signal using a variety of methods.

Regardless of which of the following methods is used to create the signal file, the FSW-K18 personality may be repointed by pressing the "Reference Signal" softkey to bring up the following dialog.

10	Spectrum X Amplifier X Reference Signal Capture Time 409.6 µs TTS 45.370907173 µs E dB Freq 1.0 GHz Meas BW 80 MHz SRate 100 MHz X	Count 1/1
Bypass agnitude Car	Current Generator Waveform Custom Waveform File Generate Own Signal	•1
	Read Signal from Generator	
3m		
3m	Read and Load Current Signal from Generator Segment	
(Ipper):Ish	Open Generator Setup	and and the prospinal distances of the
d ha and	Currently Active Reference Signal	, Human Ith boards all
	Sample Rate: 100 MHz Number Of Samples: 16384	
3m m m	Waveform File: C:\R_S\Instr\user\ET\Files\AmpTools.wv	a that the black with
3m		
3m	R&S Generator R&S FSW	
s	Waveform LAN	409
ectrum FFT		1 Clrw●2 Mod●Idea
3m	Generator RF DUT RF FSW-K18	
m	Generation Generation	
iBm		
iBm		
0 MHz	10.0 MHz/ 50.0 MHz -78.0 dBm 6.0 dBm	-18.0
ne Domain	Meas 2 Mod 3 Ref 6 AM/PM vs Input Power	1 Clrw●2 Mod●Idea
$\wedge \wedge$		
		and a state of the

Then select "Read and Load Current Signal from Generator" (Fig. 6-1).

10:15:55 20.12.2016

Fig. 6-1: Driving the FSW-K18 using an ARB waveform resident on the SMW

6.2.2 Use of WinIQSIM2

R&S[®]WinIQSIM2 is a free-of-charge simulation software used for generating arbitrary (ARB) waveforms for use with signal generators. The software and associated documentation is available for download here.

Once the waveform file is created, it may be used in FSW-K18 by following the procedure described in 6.2.1.

Note that additional license(s) for the SMW, might be required to play proprietary waveforms generated by the software.

The user may generate signals from custom constellations, using the Mapwiz software, (free-of-charge download from the Rohde & Schwarz website). Those constellation definitions may be imported into WinIQSIM2.

6.2.3 SMW Built-in Custom Waveform Generator

Building and using ARB waveforms in the SMW is intuitive, specific instructions can be found in the SMW200A User Manual. Note however that the ARB must be used, e.g. it is not possible to use the real-time source.

Once the .wv file is created, it may be ported to FSW-K18 by following the procedure described in 6.2.1.

6.2.4 Using MATLAB

Creating signal files for the ARB feature of the SMW to play is straightforward. A MATLAB function for converting IQ vectors into the .wv format used by the SMW is presented.

```
function mat2wv(vfcSignal, sFilename, fSampleRate, bNormalize)
% mat2wv(vfcSignal, sFilename, fSampleRate, bNormalize)
% MAT2WV creates an SMU waveform file from a MATLAB vector.
2
% Input parameters:
% vfcSignal: Input data vector
% sFilename: Filename of the generated waveform file
% fSampleRate: Sample rate of the signal in Hz
% bNormalize:
2
  True: The signal is normalized by the max. magnitude
% False: The signal is not normalized. The maximum magnitude
         of the signal shall not exceed 1.0.
2
             : Rohde & Schwarz GmbH & Co. KG, Munich,
% Copyright
Germany
% File version : \main\4
                            21 Jul 2008 16:20:08
                                                   ramian
% Revision : V2.0
              : 2008/08/18 12:03:56
% Date
% Force row vector
vfcSignal = vfcSignal(:).';
% Number of samples
iNOfSamples = length(vfcSignal);
% Normalize signal
if bNormalize
  fprintf('Normalize signal\n');
  vfcSignal = vfcSignal / max(abs(vfcSignal));
  % Remark:
  % We do not normalize to max RE/IM to allow arbitrary phase
offsets
  % or frequency shifts without overflow
```

```
vfcSignal = vfcSignal / max(abs(vfcSignal));
  % Calculate the peak value
  fPeakPower = max(abs(vfcSignal).^2);
  fPeakPowerdBfs = -10*log10(fPeakPower);
  % Calculate the RMS value
  fMeanPower = mean(abs(vfcSignal).^2);
  fRMSdBfs = -10*log10(fMeanPower);
else
  % Do not normalize the signal
  fPeakPowerdBfs = 0;
  fRMSdBfs = 0;
end
% Quantization to 16 bit
iMaxInt = 32767;
vicData = vfcSignal*iMaxInt;
clear vfcSignal;
viDataInterleaved =
reshape([real(vicData); imag(vicData)], 1, 2*iNOfSamples);
clear vicData;
viDataInterleaved = int16(viDataInterleaved);
% Write waveform file
fid = fopen(sFilename, 'w');
fprintf(fid,'%s','{TYPE: SMU-WV,0}');
fprintf(fid,'%s','{COMMENT: Generated by mat2wv.m}');
fprintf(fid,'%s',['{DATE: ' datestr(now,'yyyy-mm-dd;HH:MM:SS')
'}');
fprintf(fid,'%s',['{LEVEL OFFS: ' num2str(fRMSdBfs) ', '
num2str(fPeakPowerdBfs) '}']);
fprintf(fid,'%s',['{CLOCK: ' num2str(fSampleRate) '}']);
fprintf(fid,'%s',['{SAMPLES: ' num2str(iNOfSamples) '}']);
fprintf(fid, '%s', ['{WAVEFORM-' num2str(4*iNOfSamples+1)
':#']);
fwrite(fid,viDataInterleaved,'int16');
fprintf(fid, '%s', '}');
fclose(fid);
```

Once the .wv file is created, it may be ported to FSW-K18 by following the procedure described in 6.2.1. Other similar software may be utilized in a similar way as exemplified here for MATLAB.

The test signal file may also initially reside on the FSW itself, and be copied to the SMW using the "Custom Waveform File" tab of the "Reference Signal" softkey dialog in the FSW-K18 personality.

7 Glossary

AM-AM: A distortion metric, variation in transmitter gain as a function of the instantaneous input amplitude

AM-PM: A distortion metric, the creation of transmission phase distortion as a function of the instantaneous input amplitude

AM-xM: A distortion metric, the creation of either transmission phase or transmission gain distortion as a function of the instantaneous input amplitude

BUC: Block Up-Converter. Colloquial name given to a radio transmitter used for uplink to a satellite.

DPD: Digital PreDistortion. A linearization method, for improving the signal quality or integrity, usually in a radio transmitter.

PAPR: Peak to average power ratio of a signal.

PAPRi: Peak to average power ratio of the input signal. In non-linear systems, the peak-to-average ratio is modified by AM-AM. Thus the Peak to average ratio varies according to the measurement point in a system.

PAPRo: Peak to average power ratio of the output signal. In non-linear systems, the peak-to-average ratio is modified by AM-AM. Often, but not exclusively, PAR is reduced as is passes through successive components in a quasi-linear RFFE, reaching its lowest value at the output.

PEP: Peak envelope power. The instantaneous maximum signal level at a specific point in the RFFE. Equal to the average power plus to the PAR (Peak to average power ratio)

PSat: Saturated output power. The maximum output level which cannot be exceeded, regardless of how high the input signal level is.

RFFE: Radio or RF Frontend. The analog component nearest to the ANT or channel interface, responsible for conditioning a signal entering or leaving the communication channel.

Rohde & Schwarz

The Rohde & Schwarz electronics group offers innovative solutions in the following business fields: test and measurement, broadcast and media, secure communications, cybersecurity, radiomonitoring and radiolocation. Founded more than 80 years ago, this independent company has an extensive sales and service network and is present in more than 70 countries.

The electronics group is among the world market leaders in its established business fields. The company is headquartered in Munich, Germany. It also has regional headquarters in Singapore and Columbia, Maryland, USA, to manage its operations in these regions.

Regional contact

Europe, Africa, Middle East +49 89 4129 12345 customersupport@rohde-schwarz.com

North America 1 888 TEST RSA (1 888 837 87 72) customer.support@rsa.rohde-schwarz.com

Latin America +1 410 910 79 88 customersupport.la@rohde-schwarz.com

Asia Pacific +65 65 13 04 88 customersupport.asia@rohde-schwarz.com

China +86 800 810 82 28 |+86 400 650 58 96 customersupport.china@rohde-schwarz.com

Sustainable product design

- Environmental compatibility and eco-footprint
- Energy efficiency and low emissions
- Longevity and optimized total cost of ownership

Certified Quality Management ISO 9001 Certified Environmental Management ISO 14001

This application note and the supplied programs may only be used subject to the conditions of use set forth in the download area of the Rohde & Schwarz website.

 $\mathsf{R\&S}^{\circledast}$ is a registered trademark of Rohde & Schwarz GmbH & Co. KG; Trade names are trademarks of the owners.

Rohde & Schwarz GmbH & Co. KG Mühldorfstraße 15 | 81671 Munich, Germany Phone + 49 89 4129 - 0 | Fax + 49 89 4129 - 13777

www.rohde-schwarz.com