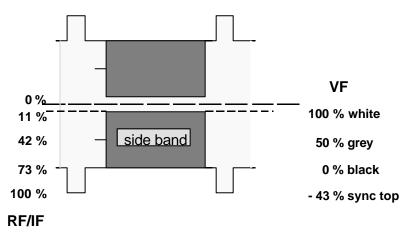


BROADCASTING DIVISION

Application Note

Reference factor between RF (referenced to sync top level) and VF

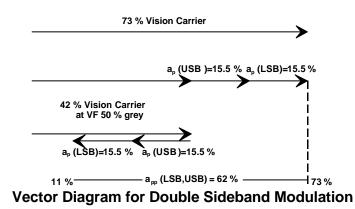
Products:

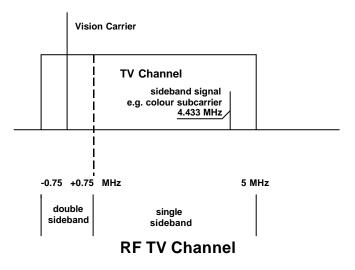

TV Demodulators and Video Analyzers

UAF + EFA 33 VSA + B10

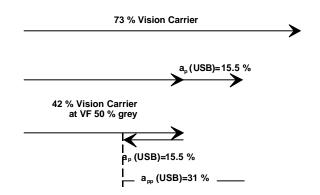
7BM10_0E

Reference factor between RF (referenced to sync top level) and VF


Let us analyze a modulated signal:

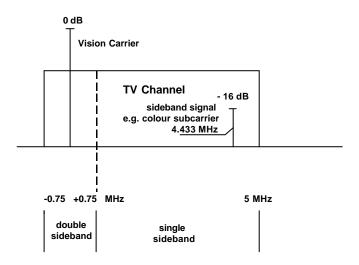

Now do the calculation:

The sideband amplitude referenced to U_{pp} (USB , LSB) is a_{pp} (USB , LSB) = 73%-11% = 62% in case of double sideband modulation, as we have in VSB frequency range.



If we now shift the sideband frequency to more than + 0.75 MHz, we reach the range of the single sideband modulation in the TV channel:

Then the vector diagramm changes to the following:



Vector Diagram for Single Sideband Modulation

This shows, that the equvivalent level of a RF sideband for a 100% VF signal (that is 700 mV e.g. White Bar) is a_p (USB) =15.5 % of the vision carrier. As the vector with the level $U_{p \text{ USB}}$ rotates around the peak of the RF carrier 42 % of the vision carrier which represents the 50 % grey level in VF, the resulting related level as percentage is a_{pp} (USB) = 31 %.

The ratio 15.5 % between $U_{p \, USB}$ and the vision carrier defines the level distance between the sideband signal - for instance the colour subcarrier 4.433 MHz - and the vision carrier. If you calculate this distance in dB, you arrive at the famous level value of $\Delta L = 20 \text{ Ig} (0.155) \text{ dB} = 16.19 \text{ dB}.$

Levels inside the RF TV Channel

This level distance of -16.19 dB corresponds to a VF sideband signal with U_{pp} = 700 mV. At least we have to consider the conversion factor from U_{pp} to U_{rms} for the sideband sinewave signal $c = 20 \text{ Ig} (1/(2^*\sqrt{2})) = -9.09 \text{ dB}$

and we arrive at the reference factor V dB between RF (referenced to sync top level) and VF V $_{RF}$ - 16.19 dB + 9.03 dB = V $_{VF}$

$$V_{RF} = V_{VF} + 7.16 \text{ dB}$$

Additional Information

Our Application Notes are regularly revised and updated. Check for any changes at <u>http://www.rohde-schwarz.com</u>.

Please send any comments or suggestions about this Application Note to

Broadcasting-TM-Applications@rohde-schwarz.com.

