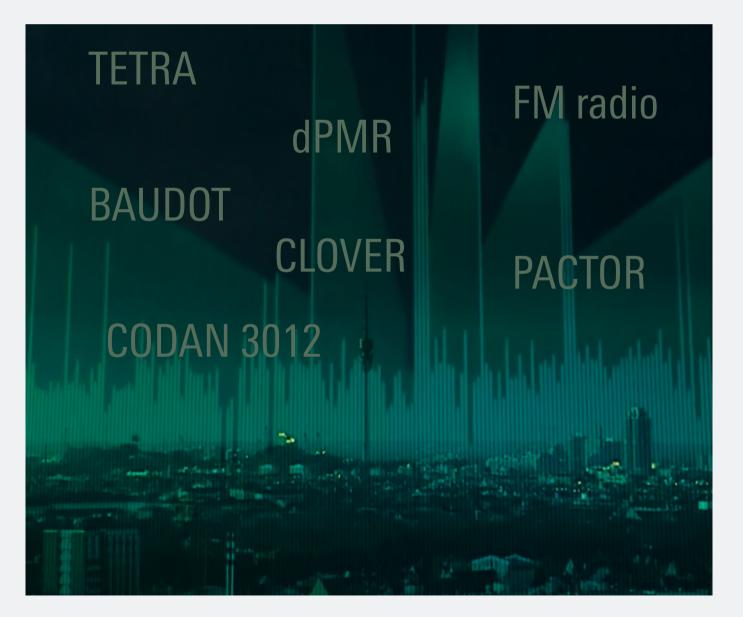
Turn your goals into reality


The essence of Rohde & Schwarz signal interception and signal analysis

Typical use cases

You want

- **Comprehensive COMINT** on the ground, at sea and in the air (i.e. intelligence systems in vehicles, surface vessels, submarines and aircraft)
- I To achieve effective radio reconnaissance and situational awareness, through seamless monitoring of radio scenarios by capturing every emission within a large frequency band
- I To reduce the routine workloads of your operators and increase the efficiency of surveillance (quick counteraction), by implementing automatic processes within your workflows
- To gather strategic intelligence, intercept emitters and enhance operational benefits, through automatic detection, classification and decoding of signals
- To gain early warning of security threats, by "listening in" on analog and digital voice communications using modern handheld radios
- To exploit the communications pattern and obtain the content of the signals, by recording diverse signal scenarios for post-processing or offline analysis
- To extend your current system with additional advanced monitoring features, by integrating the Rohde&Schwarz signal monitoring solution into your customized system via open interfaces

Our aim: to provide an all-in-one solution for coping with the increasing challenges and requirements in signal monitoring First and foremost, we've succeeded!

Rohde & Schwarz stands for quality, precision and innovation in all fields of wireless communications. Our customers benefit from the extensive experience and expertise Rohde & Schwarz has in systems and equipment for the detection, location, and analysis of radio signals for use in public safety and external security applications as well as radiomonitoring and frequency management in the field of public administration. Our mission is technological leadership through continuous advancement.

The frequency spectrum is limited, but the diversity of applications in mobile, wireless and satellite communications is dramatically increasing. It poses ever-increasing challenges for civilian regulation authorities, intelligence services, security agencies, commercial communities, public and even private services. Undeniably, signal monitoring and interception across wide frequency ranges with different signal scenarios is very challenging. Furthermore, comprehensive signal analysis of unknown and complex emissions demands a great deal of effort. With thousands of signals occupying the frequency spectrum, our mission is to monitor all the target signals, detect signals of interest and identify the unknowns. With the rapidly increasing demand for signal analysis in radiomonitoring and radiolocation, there is an urgent need for enhanced signal monitoring solutions. A proficient and advanced signal monitoring solution should enable the surveillance of a spectrum segment in order to detect emissions of interest which are then recognized, classified, and further processed. Its workflows might include signal interception, signal surveillance and signal analysis.

Signal surveillance: observing (i.e. targeted monitoring) the occurrence and behavior of specific signals in order to obtain situation awareness of a certain signal scenario. Surveillance systems must be capable of measuring unknown or "unfriendly" transmissions and extract the information content.

Signal interception: searching for, detecting, recording and reporting all signals of interest in a given scenario, often including content extraction by using demodulators and decoders.

Signal analysis: determining the technical signal parameters by performing automatic or manual measurements on live or recorded signals. This might also include using demodulators and decoders to resolve the content of an unknown signal.

Rohde & Schwarz signal analysis solutions are ideal for monitoring the complete signal scenarios – signal interception, signal surveillance and signal analysis.

We understand what you need

Nowadays, due to the explosive increase in activity within the radio spectrum and the ever-increasing density of the signal scenarios, searching for unknown signals is the equivalent of looking for a needle in a haystack. An ideal signal monitoring solution must comb through this "haystack" to find specific signals, effectively and reliably. The need to search for signals of interest in large, densely populated frequency ranges requires automated techniques for signal detection, classification, demodulation and processing, which are becoming the key elements in the design of signal monitoring solutions.

Missions range from the detection and processing of specific signals of interest to the discovery of unknown transmissions within a dense scenario – from classification of all emissions to automated recording and processing of both known and unknown signals according to user-specific criteria.

The challenges of radiomonitoring are on the rise as radio networking sweeps the globe and frequency bands are occupied with thousands of signals. The search for signals of interest in large, densely populated frequency ranges is the equivalent of looking for a needle in a haystack.

Technical requirements

A passion for working closely with our customers and understanding the needs of the market is the driving force behind our ongoing research and development programs. We are constantly expanding the horizons of our signal analysis solutions in order to meet your operational wants and needs. The list below summarizes the technical requirements and the necessary workflows for a complete signal monitoring solution. The listed requirements are comprehensively implemented within the Rohde&Schwarz signal analysis product family.

Your requirement

You need to monitor a large frequency range

Covering the entire spectrum in HF/VHF/UHF/SHF as well as continuously detecting and monitoring communications scenarios

You need to intercept a densely populated signal scenario

Surveillance of all signals in the frequency ranges of interest (automatic and manual). The solution must provide multichannel capabilities (> 100 processing channels) that allow monitoring of a large number of signals simultaneously

You need to detect known or unknown signals

Intercepting of countless analog and digital signals, including fixed-frequency signals, bursts and even frequency agile, short-time emissions

We have what you want

Rohde&Schwarz signal analysis products provide all-inone signal analysis solutions encompassing:

- Searching for, detection and classification of numerous signal types
- I Analysis and characterization of unknown signal types
- Monitoring of signals that range from HF to SHF, covering a comprehensive array of modulation types and transmission systems
- Decoding of a wide range of transmission systems, including voice, text, fax, telemetry, signaling and data
- Analysis of analog and digital signals as well as LPI methods (e.g. frequency agile short-time emissions)
- Fully automatic interception and monitoring of specific signals
- Automatic profile recognition or separation of different frequency agile transmission systems and online recombination of frequency agile short-time signals to a continuous baseband signal
- I Automatic classification, recording and content recovery
- Techniques for reducing the time required for detection, search and classification processes, e.g. frequency exclusion list, spectral shape detection and prioritizing
- Technical pulse analysis software offers an extensive set of detection, visualization and measurement tools for analyzing pulsed and FMCW radar signals

Our strategic signal monitoring solution

With our longstanding international experience in the field of radiomonitoring and radiolocation, Rohde&Schwarz is able to offer a wide range of suitable equipment and solutions. Modular concepts and customized solutions are tailored to meet the specific technical requirements of each and every user. The table correlates specific applications with the preceding list of described needs. The result is a clear, concise presentation of real-world issues that are comprehensively addressed by the innovative Rohde&Schwarz technology.

Our approach

Multichannel

- We have a multichannel signal analysis solution, realizing top-class signal processing with DDCs extraction up to HF: 128 / VHF/UHF: 32 channels simultaneously and a realtime bandwidth of up to HF: 20 MHz / VHF/UHF: 80 MHz per receiver. It is especially designed to support search and surveillance workflows for:
- I A very large number of parallel signals per wideband receiver (essential for HF monitoring systems)
- I Signal scenarios with large frequency ranges
- I Detection of wideband signals (essential for VHF/UHF monitoring systems)

Scanning:

We have signal detection using a scanning receiver to cover any frequency range. This enables continuous searching for new emissions across a wide frequency range while processing detected signals in parallel. It is extremely useful to have a complete overview of the signal scenario and then to focus on specific frequency bands or emissions.

Automatic spectral energy detector

We have an advanced detector that automatically performs energy measurements within scan data or I/Q data in order to detect fixed frequency, burst and frequency agile, short-time emissions. Detections can subsequently be processed to automatically classify their modulation type and transmission system. Content recovery may also be achieved depending on the type of signal.

We understand what you need

Your requirement You need to filter out the targeted or unwanted signals Enabling users to define a priority list with which the detections will subsequently be processed further or ignored You need to search at high speed for signals of interest Accelerating the recognition of signals of interest in order to search for numerous signal types, fast and comprehensively You need to classify the signals Reliably recognizing the transmission systems and modulation types. All technical signal parameters are to be automatically measured and updated. You need to achieve fully automatic signal processing workflow Triggering specific actions (alarm, content extraction, recording, etc.) by detecting certain signals based on the user's predefined rules. A fully automatic signal processing workflow reduces the operator's workload by performing the routine tasks more efficiently and effectively. You need to extract the signals' content Achieving content recovery (decoded text, graphic output, audio, etc.) by using an extensive library of transmission systems, demodulators and decoders You need to record and replay multiple signals Enhancing the system capabilities by enabling the recording of entire wideband scenarios or of several individual narrowband scenarios during multichannel monitoring. Multiple I/Q data streams can be recorded in parallel with decoded data and audio content. You need to create reports or send results to a database The final step in a typical COMINT workflow is the creation of a comprehensive report by consolidating the analysis result from different sensor subsystems. You need to extend the solution by adding custom modules via open software architecture Extending the standard systems via an open interface that enables straightforward integration of customer-developed signal processing modules, such as demodulator, decoder, transmission system and receiver-driver You need to measure the unknown signals (technical analysis) Going into detail to characterize unknown signals through measurement of emission parameters such as center frequency, bandwidth, frequency shift, symbol rate and channel spacing. Bitstream analysis is needed for analyzing the unknown channel coding. Performing measurements on live and recorded signals scenarios enables you to determine the technical parameters of unknown signals, effectively and efficiently.

We have what you want

Our approach

Priority list

We have enabled the user to assign priorities to the classification process. Priorities can be assigned based on any parameter provided in a detection result – e.g. frequency, bandwidth, level and status. Priorities can be assigned manually or automatically. Four priority levels are available: High, Medium, Low and Ignore. The principle is that detections with a higher priority are processed first. Use of "Ignore" lets you filter out unwanted detections, hence the overall process of classifying detections will be accelerated and the efficiency of signal analysis can be significantly improved. You can assign priorities based on a set of conditions which meet your requirements, for example:

- Process the signals with a defined bandwidth first (e.g. 3 kHz)
- I gnore all signals already recognized by the spectral shape detector
- I gnore the particular frequency bands

Spectral shape detector

We have a high-performance spectral shape detector that excels in high speed-signal search, significantly (and consistently) accelerating the signal recognition process. Owing to its unique algorithm, this advanced detector can analyze over 1000 spectral shapes in 1 s, thus ensuring effective monitoring of radio bands of interest and reliable detection of signals even under harsh radio conditions.

Well-established classifier

We have a powerful classifier that automatically recognizes numerous modulation types and transmission systems. Classifications are based on precise measurement of technical signal parameters (bandwidth, level, duration, modulation type, number of channels, symbol rate, shift, etc.). These measurements are fed into a unique decision-tree-based classification algorithm that outputs the measured values along with the classification result. The result is flagged with a confidence value.

Fully automatic processing (rule-based decisions)

We have an impressive solution that combines the benefits of automatic detection and classification with fully automatic processing of signals. Classification results can be used as input for:

- I Demodulation and decoding of the signal content, e.g. analog/digital audio, graphics and text
- User-defined rules that decide what further actions should be triggered, e.g. generating an alert message and recording the signal

For example: If a classification result contains a certain transmission type, then inform the operator and record the signal for 60 s. We also provide a script editing tool for writing, editing and testing the rules.

Extensive transmission system library

We have an extensive library of transmission systems, demodulators and decoders (currently over 150 in total). This library enables content extraction (i.e. listening to audio, obtaining decoded texts or image files) of numerous transmission methods, including TETRA, dPMR, PACTOR III, CODAN 3012, CLOVER signals, etc. We are continuously striving to expand this transmission system library.

Recording and replaying

We have enhanced the user's processing capabilities by providing different recording possibilities (up to 80 MHz wideband digital IF) and subsequent replaying of signals for detailed further technical analysis.

Report and database

- We have integrated functionality for:
- I Sending reporting messages to COMINT database servers
- Integrating signal processing solutions into R&S®RAMON (radiomonitoring) systems

In the case of R&S®RAMON, solutions can combine sensor equipment such as antennas, receivers, direction finders, IT components and reporting/ databases. The system controls the workflow between operators at one or more stations and stores the intercepted signals along with the corresponding signal's calculated location in the COMINT database. Operators can evaluate this data as well as establish and update the emissions overview.

Extensibility via open interfaces (well-documented API)

We have an open interface to enable independent extension of signal processing capabilities by the user and integration into existing system solutions. Signal processing modules include the receiver-driver (for the third-party receiver), demodulator, decoder and transmission system. This flexibility enables users to extend and adapt their systems to suit their own specifications and requirements. Plus, if users have their own GUI, our solution can be integrated into their platform.

Technical signal analysis

We have a comprehensive signal processing and signal analysis solution for complex signal scenarios or the measurement of unknown signals. It covers the measurement methods specified in the ITU-R SM.1600 and other recommendations. For unknown signals, this solution offers a variety of representations and tools for analyzing and measuring technical parameters such as bandwidth, symbol rate, number of tones, tone spacing, shift, modulation index, length of guard interval, number of channels, signal duration, symbol valency and modulation type. Challenging tasks such as bitstream analysis and dehopping of frequency agile, short-time emissions can be addressed via additional Rohde&Schwarz products.

Product portfolio

R&S®GX460/465

is a recording/replaying device, ideal for use in signal interception systems and in combination with

- R&S®CA120/R&S®CA100 multichannel signal analysis and most Rohde & Schwarz receivers and direction finders:
- I Sustained data transfer rate for recording baseband I/Q data with a maximum bandwidth of 80 MHz (R&S®GX465)
- I Recording of various data formats (I/Q, symbol, image, audio, FFT, etc.)
- I Various recording and replaying modes such as continuous recording
- I One-page spectrogram summary of recording
- I Multiple recordings of various data types in parallel

R&S®CA120

is a flexible and automatic multichannel solution for detecting, classifying and processing radiocommunications signals:

- I Automatic interception and monitoring of complete signal scenarios
- I High-speed signal search with the spectral shape detector
- I Powerful classifier
- I Extensive demodulators and decoders library
- Detection of fixed frequency, burst and frequency agile short-time signals
- I Fully automatic processing of detected signals
- Modular scalability to over 100-channel signal processing solution
- I Open interface

Signal analysis applications

Signal monitoring

R&S®CA100

is a standalone software solution for analyzing, classifying, demodulating and decoding digital and analog IF signals (up to four channels with R&S®ESMD). The software provides powerful signal analysis and signal processing functions running on a Windows PC:

- Signal acquisition and receiver control
- I Automatic search and classification of signals in a defined frequency range
- I Detection, classification, demodulation and decoding
- I Signal recording and replaying

The signal analysis workflow summarizes the necessary applications for a complete signal processing solution.

It represents the comprehensive algorithms and strategies needed to successfully search for, detect, classify, process and analyze signals.

R&S®CA100IS

is an R&S®CA100 option enabling analysis of signal scenarios in line with ITU-R SM.1600:

- I Measurement methods specified by the ITU-R SM.1600 recommendation
- I Recognition of known or standardized methods
- I Time/frequency segmentation for multisignal scenarios
- Advanced visualization
- I Tools and functions for analyzing and measuring technical signal parameters such as bandwidth, symbol rate, number of tones, tone spacing, shift, modulation index, length of guard interval, number of channels, signal duration

R&S®GX410

- is an advanced solution for offline technical analysis of unknown or complex signal scenarios:
- Automatic and manual analysis solutions for fixed frequency, burst signals and frequency agile short-time emissions
- I Hopper analysis and recombination
- I Time and frequency domain signal analysis for determining technical parameters

signal analysis

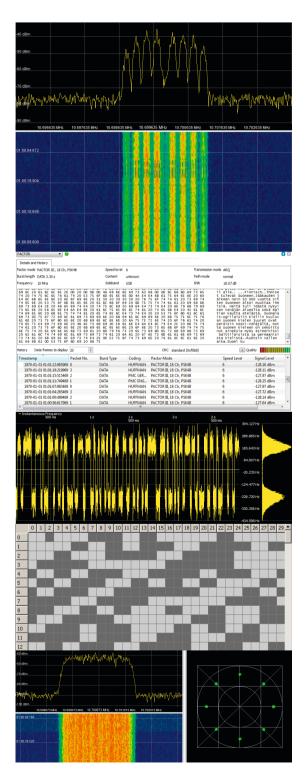
Technical

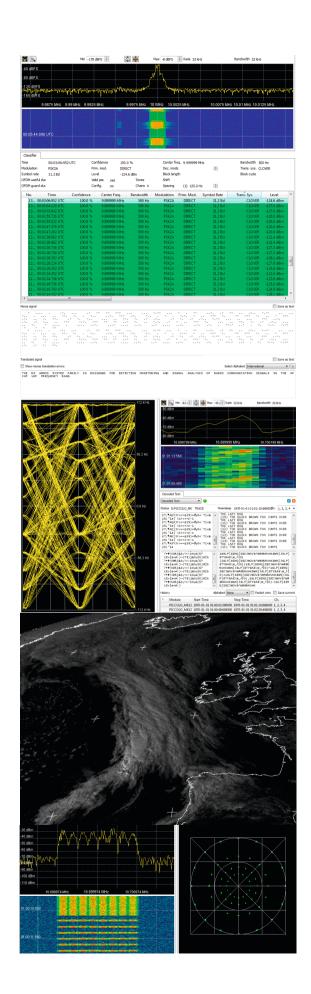
R&S®CA250

is powerful software for analyzing and manipulating signals at the bitstream/symbol stream level. It can be used to analyze the characteristics of demodulated signals with unknown coding:

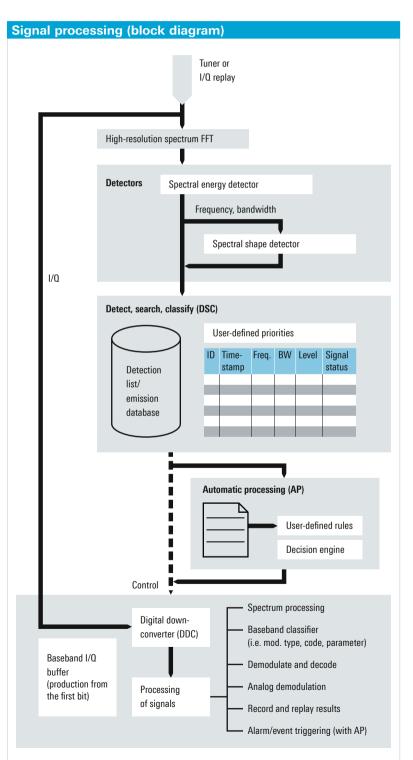
- I Bit manipulation functions: inversion, autocorrelation, descrambling, deinterleaving, etc.
- I Bitstream analysis functions: structure analysis, entropy analysis, scrambler analysis, convolutional code analysis, etc.
- I Extendable alphabet decoder and support for decoder development

Knowledge transfer/training


Our motivation: to understand our users' needs and requirements, working closely together with them for knowledge transfer and training in order to provide ideal signal analysis solutions. The result of the demodulator/decoder development will be integrated back into the signal monitoring solution. We provide: I Detailed manuals and quick start guides to help you get started

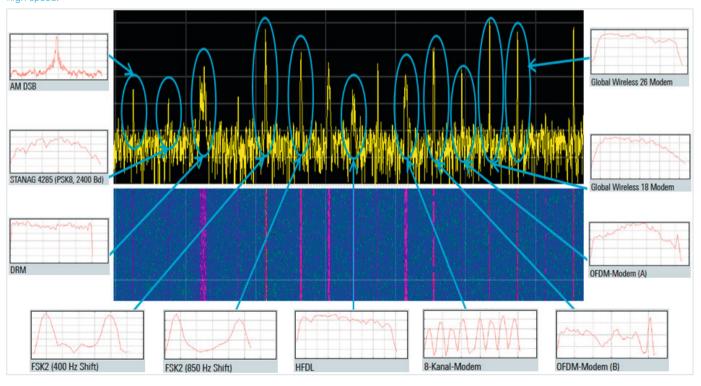

- Documented sample and base class functions for the user extensibility open interface configuration and
 ParamGuiStudio to create the required configuration and parameterization dialogs
- Experienced trainers

Each stage in the workflow is supported by the Rohde & Schwarz signal analysis product family. Each product is tailored to provide specific functions and applications that cover signal monitoring (online/offline), technical signal analysis, bitstream analysis and demodulator/decoder development.


Signal analysis

The purpose of signal analysis can be summarized as follows: getting the right information into the right hands at the right time to enable informed and realistic decisions to be made based on current data. Civilian and military users have different and widely varying missions but both rely on the same signal monitoring and processing systems. This section provides a system overview independent of user and use case.

The complete signal processing chain is shown in the figure below. The Rohde & Schwarz signal analysis solution receives I/Q data (live or replayed), and a high-resolution spectrum is computed from this input and fed to the detector. The detector applies a detection threshold to the spectrum, which is adapted to the variable noise floor. The detected emissions can be further processed by the spectral shape detector (SDT), which features a spectral pattern-matching detection technology. Additionally, interception processing channels with baseband classifiers (CL) can be used to automatically recognize the modulation type, the transmission system and the technical signal parameters of each detected signal. The solution provides multichannel capabilities that allow monitoring of a large number of signals simultaneously. The automatic processing (AP) functionality combines the detect, search and classify module with fully automated signal processing based on user-defined rules. This incorporates a variety of functions, including: spectrum processing, baseband classification, demodulation, decoding, recording and alarm/ event triggering.


Our highlights

Spectral shape detector

Owing to its spectral matching algorithm, the spectral shape detector implements a high-speed search for known and unknown signals with a processing rate of over 1000 emissions/s. Common shapes are predefined in a generic profile (i.e. CW, AM-DSB, multichannel and FSK signals). User-defined shapes can be generated via the spectral trainer application and combined in custom profiles in order to recognize both known and unknown signals.

The decisions of the spectral matching algorithm are based on many criteria within a comprehensive decision matrix, allowing the similarities between input signals and shape profiles to be reliably assessed. This method is ideal for recognizing and extracting signals of interest, excluding unwanted signals and developing a custom library of identifiable signal types.

Numerous types of modern communications signals can be recognized by comparing their spectral shapes with predefined reference shapes at very high speed.

Baseband classifier

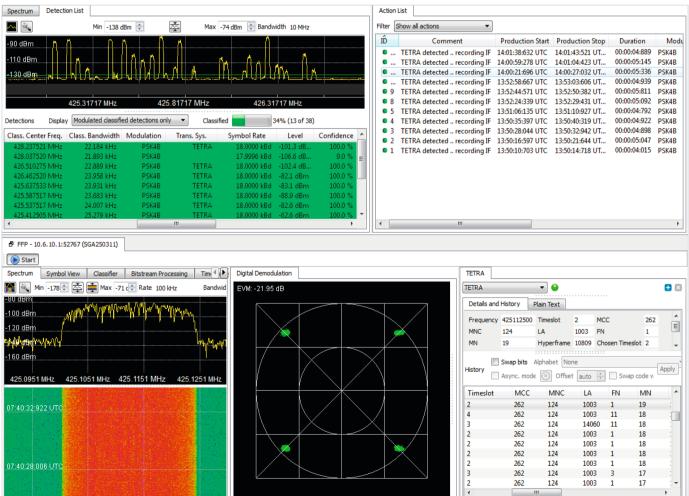
The baseband classifier is a reliable solution for determining the modulation type, measuring technical parameters and identifying the transmission system of a wide range of analog and digital signals. The baseband classifier is an essential tool for automatic search strategies, as it provides the precise results that are needed to make reliable decisions in the context of the search strategy and signal surveillances. The automatic classification algorithm performs segmentation, modulation analysis and transmission system recognition; this determines the signal's exact center frequency and bandwidth as well as relevant technical signal parameters such as symbol rate, frequency, shift, modulation types, number of OFDM channels and codes.

The classifier continuously measures technical signal parameters such as center frequency, bandwidth, symbol rate, modulation type and transmission system. It recognizes this signal as an HF CLOVER modem with the corresponding parameters.

		Min -178 di	BFS 🚖 🛛 🛛	ž	Max -8 dBFS	🚔 Rate 32 kł	Hz	Bandwidth 32 kHz	
I dBFS I dBFS					Mh				
20 dBFS /*//~///~// 60 dBFS	nge w a ay runhy	ym, phritianed	uyuunna waxaa	rmwerne	- Joseph College	trov whiteler	whymymymyth	~hwy~~~nhurmathu	\nongentary and the second
9	9.9875 MHz 9.	99 MHz 9.9925 I	MHz	9.9975 MHz 1	10 MHz 10.00	25 MHz	10.0075 MI	Hz 10.01 MHz 10.01	25 MHz
05:44:09									
	19 6 8 20					States.			a franciska se
Issifier	00:03:06:952		fidence 100.	0.94	Center fr	eq. 9,999999	/ ∐-7	Bandwidth 50	00 H 7
ulation	PSK2A		. mod. DIRE		Dec. mod			Trans. sys. CL	
bol rate	31.2 Bd	Leve		.6 dBm	Block leng)th		Block cycle	
M useful d		Valid	par. yes	Tones	Shift				
		Com	£	Change 4	Consistent	(4) 405 01			
M guard d		Con	fig. no	Chans 4	Spacing	(1) 125.0	Hz	<u>^</u>	
lo.	Time	Confidence	Center Freq.	Bandwidth	Modulation	Prim. Mod.	Symbol Rate	Trans. Sys.	Level
lo. 13 00:0	Time 03:06:952 UTC	Confidence 100.0 %	Center Freq. 9.999999 MHz	Bandwidth 500 Hz	Modulation PSK2A	Prim. Mod. DIRECT	Symbol Rate 31.2 Bd	CLOVER	-124.6 dBm
lo. 13 00:0 13 00:0	Time 03:06:952 UTC 03:04:120 UTC	Confidence 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz	Bandwidth 500 Hz 500 Hz	Modulation PSK2A PSK2A	Prim. Mod. DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd	CLOVER CLOVER	-124.6 dBm -127.0 dBm
lo. 13 00:0 13 00:0 13 00:0	Time 03:06:952 UTC	Confidence 100.0 %	Center Freq. 9.999999 MHz	Bandwidth 500 Hz	Modulation PSK2A	Prim. Mod. DIRECT	Symbol Rate 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd	CLOVER	-124.6 dBm
lo. 13 00:0 13 00:0 13 00:0 13 00:0	Time 03:06:952 UTC 03:04:120 UTC 03:03:842 UTC	Confidence 100.0 % 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz 9.999998 MHz	Bandwidth 500 Hz 500 Hz 500 Hz	Modulation PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm
lo. 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0	Time 03:06:952 UTC 03:04:120 UTC 03:03:842 UTC 02:55:736 UTC	Confidence 100.0 % 100.0 % 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz	Bandwidth 500 Hz 500 Hz 500 Hz 500 Hz	Modulation PSK2A PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm
No. 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0	Time 03:06:952 UTC 03:04:120 UTC 03:03:842 UTC 02:55:736 UTC 02:55:522 UTC	Confidence 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz	Bandwidth 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz	Modulation PSK2A PSK2A PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm -126.6 dBm
No. 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0	Time 03:06:952 UTC 03:04:120 UTC 03:03:842 UTC 02:55:736 UTC 02:55:522 UTC 02:47:376 UTC	Confidence 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz	Bandwidth 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz	Modulation PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm -126.6 dBm -120.6 dBm
Jo. 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 12 00:0 12 00:0	Time 03:06:952 UTC 03:04:120 UTC 03:03:842 UTC 02:55:736 UTC 02:55:522 UTC 02:47:376 UTC 02:47:202 UTC	Confidence 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz	Bandwidth 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz	Modulation PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm -126.6 dBm -120.6 dBm -120.6 dBm
Jo. 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 14 00:0 15 00:0 12 00:0 12 00:0	Time 03:06:952 UTC 03:04:120 UTC 03:03:842 UTC 02:55:736 UTC 02:55:522 UTC 02:47:376 UTC 02:47:202 UTC 02:47:202 UTC	Confidence 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz	Bandwidth 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz	Modulation PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm -126.6 dBm -120.6 dBm -120.6 dBm -121.4 dBm
lo. 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 12 00:0 12 00:0 12 00:0 12 00:0	Time 03:06:952 UTC 03:04:120 UTC 03:03:842 UTC 02:55:736 UTC 02:55:522 UTC 02:47:376 UTC 02:47:202 UTC 02:47:202 UTC 02:38:992 UTC 02:38:822 UTC	Confidence 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz	Bandwidth 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz	Modulation PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm -126.6 dBm -120.6 dBm -120.6 dBm -121.4 dBm -121.4 dBm
Io. 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0	Time 03:06:952 UTC 03:04:120 UTC 02:55:736 UTC 02:55:522 UTC 02:47:376 UTC 02:47:202 UTC 02:47:202 UTC 02:38:992 UTC 02:38:822 UTC 02:38:82 UTC 02:30:736 UTC	Confidence 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz 9.999998 MHz	Bandwidth 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz 500 Hz	Modulation PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm -126.6 dBm -120.6 dBm -120.6 dBm -121.4 dBm -121.4 dBm -121.4 dBm
Io. 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0	Time 03:06:952 UTC 03:04:120 UTC 02:55:736 UTC 02:55:522 UTC 02:47:376 UTC 02:47:202 UTC 02:47:202 UTC 02:38:992 UTC 02:38:82 UTC 02:38:82 UTC 02:30:736 UTC	Confidence 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz	Bandwidth 500 Hz	Modulation PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm -126.6 dBm -120.6 dBm -120.6 dBm -121.4 dBm -121.4 dBm -121.4 dBm -127.3 dBm
Io. 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0	Time 03:06:952 UTC 03:04:120 UTC 02:55:736 UTC 02:55:522 UTC 02:47:376 UTC 02:47:202 UTC 02:47:202 UTC 02:38:992 UTC 02:38:882 UTC 02:30:736 UTC 02:30:736 UTC 02:28:352 UTC	Confidence 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz	Bandwidth 500 Hz	Modulation PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm -126.6 dBm -120.6 dBm -120.6 dBm -121.4 dBm -121.4 dBm -121.4 dBm -127.3 dBm -127.3 dBm -128.1 dBm
Io. 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0	Time 03:06:952 UTC 03:04:120 UTC 03:03:842 UTC 02:55:736 UTC 02:55:522 UTC 02:47:376 UTC 02:47:202 UTC 02:38:992 UTC 02:38:892 UTC 02:39:736 UTC 02:30:736 UTC 02:30:736 UTC 02:28:252 UTC 02:28:252 UTC 02:28:224 UTC	Confidence 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz	Bandwidth 500 Hz	Modulation PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm -126.6 dBm -120.6 dBm -120.6 dBm -121.4 dBm -121.4 dBm -121.4 dBm -127.3 dBm -127.3 dBm -127.8 dBm
No. 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 12 00:0 13 00:0 1	Time 03:06:952 UTC 03:04:120 UTC 03:03:842 UTC 02:55:736 UTC 02:55:522 UTC 02:47:376 UTC 02:47:202 UTC 02:38:892 UTC 02:38:882 UTC 02:30:736 UTC 02:30:736 UTC 02:29:736 UTC 02:28:352 UTC 02:28:252 UTC 02:28:224 UTC 02:26:352 UTC	Confidence 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz	Bandwidth 500 Hz	Modulation PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm -126.6 dBm -120.6 dBm -120.6 dBm -121.4 dBm -121.4 dBm -121.4 dBm -127.3 dBm -127.3 dBm -128.1 dBm -127.8 dBm -124.8 dBm
13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0	Time 03:06:952 UTC 03:04:120 UTC 02:55:736 UTC 02:55:522 UTC 02:47:376 UTC 02:47:202 UTC 02:38:992 UTC 02:38:82 UTC 02:30:736 UTC 02:30:736 UTC 02:28:352 UTC 02:28:224 UTC 02:26:352 UTC	Confidence 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz	Bandwidth 500 Hz 500 Hz	Modulation PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm -126.6 dBm -120.6 dBm -120.6 dBm -121.4 dBm -121.4 dBm -121.4 dBm -127.3 dBm -127.3 dBm -128.1 dBm -127.8 dBm -124.8 dBm -122.6 dBm
No. 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 13 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 12 00:0 11 00:0	Time 03:06:952 UTC 03:04:120 UTC 02:55:736 UTC 02:55:736 UTC 02:47:376 UTC 02:47:376 UTC 02:47:376 UTC 02:38:992 UTC 02:38:82 UTC 02:30:736 UTC 02:28:252 UTC 02:28:224 UTC 02:24:352 UTC 02:24:738 UTC	Confidence 100.0 % 100.0 %	Center Freq. 9.999999 MHz 9.999998 MHz	Bandwidth 500 Hz 500 Hz	Modulation PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A PSK2A	Prim. Mod. DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	Symbol Rate 31.2 Bd 31.2 Bd	CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER CLOVER	-124.6 dBm -127.0 dBm -127.0 dBm -126.6 dBm -126.6 dBm -120.6 dBm -120.6 dBm -121.4 dBm -121.4 dBm -121.3 dBm -127.3 dBm -128.1 dBm -127.8 dBm -124.8 dBm -122.6 dBm -123.8 dBm

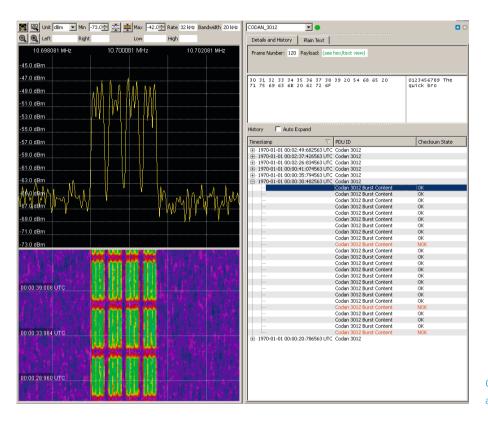
Multichannel signal analysis

The typical use case in signal processing and signal analysis is to monitor a large frequency range, which covers the entire HF/VHF/UHF/SHF spectrum, as well as to continuously detect and monitor communications scenarios. Multichannel signal analysis capability that allows simultaneous monitoring of a large number of signals is essential to intercept a densely populated signal scenario and monitor all signals in the frequency ranges of interest (automatic and manual). The multichannel signal analysis solution digitally downconverts signals to simultaneously extract up to 128 HF and 32 VHF/UHF channels, with a realtime bandwidth of up to 20 MHz (HF) and 80 MHz (VHF/UHF) per receiver.

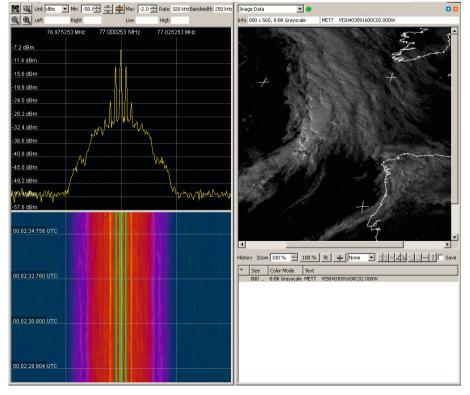

The 5 MHz wide HF signal scenario is processed with more than 100 parallel channels, classifying the technical signal parameters and the transmission system types in parallel. Multichannel signal analysis capability is essential for processing a large number of signals simultaneously in signal scenarios within large frequency ranges.

2 and			Min	-118 dBm 🚖		~	Ĭ	Max -5	3 dBm 🗦 Bandwidth 🖇	5 MHz			
						Δ	1					* A	Mr.
) dBm	ـــــــــــــــــــــــــــــــــــــ			An <u></u>		15.3880	**************************************		40.000005.000	40,0000	A		
	13.388095 M	Hz 13.888095 M	Hz 14.388095	MHZ 14	.888095 MHz	15.3000	95 MHZ 15	.888095 MHz	16.388095 MHz	16.8880	95 MHZ 17.	388095 MHz	
ection List	Action List												
			Min	-138 dBm 🌲		Z	5	Max -5	5 dBm 🚔 Bandwidth 🚦	5 MHz			
I dBm I dBm O dEm O dEm	13.388095 M				.888095 MHz	15.3880	95 MHz 15		16.388095 MHz	16.8880	95 MHz 17.	<mark>ي بر روان الم</mark> رون الم 388095 MHz	
	Display Modula	ted classified detections o	nly 🔻 Classified					97% (333 of 342)					
ID		Class, Center Freg.	Class, Bandwidth	Det. Level	Sig. Status	Confidence	Modulation	Prim, Mod.	Trans, Svs.	Tones	Symbol Rate	Shift	Block L
ID 24613	Time 13:07:14:152	Class. Center Freq. 12.935003 MHz	Class. Bandwidth 65 Hz	Det. Level -124.0 dBm	Sig. Status inactive	Confidence 95.0 %	Modulation ASK2	Prim. Mod. DIRECT	Trans. Sys. MORSE	Tones	Symbol Rate 32.8 Bd	Shift	Block l
ID	Time				-					Tones		Shift	Block
ID 24613	Time 13:07:14:152	12.935003 MHz	65 Hz	-124.0 dBm	inactive	95.0 %	ASK2	DIRECT	MORSE	Tones	32.8 Bd	Shift	Block
ID 24613 24612	Time 13:07:14:152 13:07:12:340	12.935003 MHz 13.975000 MHz	65 Hz 31 Hz	-124.0 dBm -120.0 dBm	inactive inactive	95.0 % 99.0 %	ASK2 ASK2	DIRECT DIRECT	MORSE	Tones	32.8 Bd 15.6 Bd	Shift	Block
ID 24613 24612 24491	Time 13:07:14:152 13:07:12:340 13:05:44:615	12.935003 MHz 13.975000 MHz 14.945549 MHz	65 Hz 31 Hz 19 Hz	-124.0 dBm -120.0 dBm -118.0 dBm	inactive inactive active	95.0 % 99.0 % 95.0 %	ASK2 ASK2 ASK2	DIRECT DIRECT DIRECT	MORSE MORSE MORSE	Tones	32.8 Bd 15.6 Bd 9.8 Bd	Shift	Block
ID 24613 24612 24491 24248	Time 13:07:14:152 13:07:12:340 13:05:44:615 13:02:50:750	12.935003 MHz 13.975000 MHz 14.945549 MHz 18.092267 MHz 17.869996 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -107.0 dBm	inactive inactive active inactive active	95.0 % 99.0 % 95.0 % 92.0 % 98.0 %	ASK2 ASK2 ASK2 ASK2 ASK2	DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE	Tones	32.8 Bd 15.6 Bd 9.8 Bd 20.8 Bd 7.2 Bd	Shift	Block
ID 24613 24612 24491 24248 24241 24228	Time 13:07:14:152 13:07:12:340 13:05:44:615 13:02:50:750 13:02:49:909 13:02:45:358	12.935003 MHz 13.975000 MHz 14.945549 MHz 18.092267 MHz 17.869996 MHz 17.669997 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz 8 Hz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -107.0 dBm -110.0 dBm	inactive inactive active inactive active active	95.0 % 99.0 % 95.0 % 92.0 % 98.0 % 98.0 %	ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE	Tones	32.8 Bd 15.6 Bd 9.8 Bd 20.8 Bd 7.2 Bd 4.0 Bd	Shift	Block
ID 24613 24612 24491 24248 24241 24228 23993	Time 13:07:14:152 13:07:12:340 13:05:44:615 13:02:50:750 13:02:49:909 13:02:49:909 13:02:45:358 13:00:42:596	12.935003 MHz 13.975000 MHz 14.945549 MHz 18.092267 MHz 17.869996 MHz 17.669997 MHz 15.619994 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz 8 Hz 32 Hz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -107.0 dBm -110.0 dBm -118.0 dBm	inactive inactive active inactive active active active	95.0 % 99.0 % 95.0 % 92.0 % 98.0 % 98.0 % 93.0 %	ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE	Tones	32.8 Bd 15.6 Bd 9.8 Bd 20.8 Bd 7.2 Bd 4.0 Bd 16.0 Bd	Shift	Block
ID 24613 24612 24491 24248 24241 24228 23993 23986	Time 13:07:14:152 13:07:12:340 13:05:44:615 13:02:50:750 13:02:49:909 13:02:49:909 13:02:45:358 13:00:42:596 13:02:09:267	12.935003 MHz 13.975000 MHz 14.945549 MHz 18.092267 MHz 17.669996 MHz 17.669997 MHz 15.61994 MHz 15.439996 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz 8 Hz 32 Hz 16 Hz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -118.0 dBm -107.0 dBm -118.0 dBm -118.0 dBm -114.0 dBm	inactive inactive active inactive active active active active	95.0 % 99.0 % 95.0 % 92.0 % 98.0 % 98.0 % 93.0 % 97.0 %	ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE	Tones	32.8 Bd 15.6 Bd 9.8 Bd 20.8 Bd 7.2 Bd 4.0 Bd 16.0 Bd 8.0 Bd	Shift	Block
ID 24613 24612 24491 24248 24241 24228 23993 23986 23983	Time 13:07:14:152 13:07:12:340 13:05:44:615 13:02:50:750 13:02:49:909 13:02:45:358 13:00:42:596 13:02:09:267 13:00:35:135	12.935003 MHz 13.975000 MHz 14.945549 MHz 18.092267 MHz 17.669997 MHz 15.619994 MHz 15.439996 MHz 15.359995 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz 8 Hz 32 Hz 16 Hz 25 Hz	 -124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -107.0 dBm -110.0 dBm -118.0 dBm -114.0 dBm -114.0 dBm 	inactive inactive active active active active active active active	95.0 % 99.0 % 95.0 % 98.0 % 98.0 % 93.0 % 93.0 % 97.0 %	ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE MORSE	Tones	32.8 Bd 15.6 Bd 9.8 Bd 20.8 Bd 7.2 Bd 4.0 Bd 16.0 Bd 8.0 Bd 12.6 Bd	Shift	Block
ID 24613 24612 24491 24248 24241 24228 23993 23986 23983 23984	Time 13:07:14:152 13:07:12:240 13:05:44:615 13:02:50:750 13:02:45:938 13:00:42:596 13:02:45:358 13:00:42:596 13:02:09:667 13:00:35:135 13:01:45:819	12.935003 MHz 13.975000 MHz 14.945549 MHz 18.092267 MHz 17.669996 MHz 15.619994 MHz 15.43996 MHz 15.43996 MHz 15.359995 MHz 13.380014 MHz	65 Hz 31 Hz 19 Hz 14 Hz 32 Hz 32 Hz 25 Hz 25 Hz 75 Hz	 -124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -107.0 dBm -110.0 dBm -118.0 dBm -114.0 dBm -114.0 dBm -114.0 dBm -119.0 dBm 	inactive inactive active active active active active active active active	95.0 % 99.0 % 95.0 % 92.0 % 98.0 % 93.0 % 93.0 % 96.0 % 98.0 %	ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE MORSE	Tones	32.8 Bd 15.6 Bd 9.8 Bd 20.8 Bd 7.2 Bd 4.0 Bd 16.0 Bd 8.0 Bd	Shift	Block
ID 24613 24612 24491 24248 24241 24228 23993 23986 23983 23982 23942 24213	Time 13/07:14:152 13/07:12:340 13/05:44:615 13/02:50/550 13/02:49:909 13/02:49:3588 13:00:42:596 13:02:29:267 13:00:35:125 13:01:45:819 13:02:29:372	12.935003 MHz 13.975000 MHz 14.945549 MHz 17.869996 MHz 17.669997 MHz 15.619994 MHz 15.439996 MHz 15.339995 MHz 13.880014 MHz 14.762250 MHz	65 Hz 31 Hz 41 Hz 14 Hz 32 Hz 32 Hz 25 Hz 75 Hz 3.000 kHz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -107.0 dBm -110.0 dBm -118.0 dBm -114.0 dBm -114.0 dBm -119.0 dBm -117.0 dBm	inactive active active active active active active active active active inactive	95.0 % 99.0 % 95.0 % 98.0 % 98.0 % 93.0 % 97.0 % 96.0 % 98.0 % 50.0 %	ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE MORSE ICAO_SELCAL	Tones 4	32.8 Bd 15.6 Bd 9.8 Bd 20.8 Bd 7.2 Bd 4.0 Bd 16.0 Bd 8.0 Bd 12.6 Bd	Shift	Block
ID 24613 24612 24491 24248 24241 24228 23993 23986 23983 23942 24213 24013	Time 13/07/14/152 13/07/14/152 13/02/10/250/750 13/02/49/909 13/02/45/558 13/00/42/596 13/02/09/267 13/00/35/135 13/01/45/819 13/02/29/372 13/00/47/273	12.935003 MHz 13.975000 MHz 14.945549 MHz 18.092267 MHz 17.669997 MHz 15.61994 MHz 15.43996 MHz 15.339995 MHz 13.389014 MHz 14.762250 MHz 16.838742 MHz	65 Hz 31 Hz 41 Hz 14 Hz 8 Hz 32 Hz 16 Hz 25 Hz 3.000 kHz 3.000 kHz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -107.0 dBm -110.0 dBm -114.0 dBm -114.0 dBm -119.0 dBm -117.0 dBm -115.0 dBm	inactive active active active active active active active active active active active	95.0 % 99.0 % 92.0 % 98.0 % 98.0 % 93.0 % 96.0 % 96.0 % 50.0 %	ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2 ASK2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE ICAO_SELCAL ICAO_SELCAL	Tones 4 4	32.8 Bd 15.6 Bd 9.8 Bd 20.8 Bd 7.2 Bd 4.0 Bd 16.0 Bd 8.0 Bd 12.6 Bd	Shift	Block
ID 24613 24612 24491 24248 24241 24228 23993 23986 23983 23942 24213 24013 23946	Time 13:07:14:152 13:07:12:1340 13:02:50:750 13:02:50:750 13:02:49:09 13:02:49:09 13:02:49:09 13:02:49:09 13:02:49:09 13:02:49:09 13:02:45:358 13:00:45:135 13:01:45:619 13:02:39:372 13:02:43:367	12.935003 MHz 13.975000 MHz 14.945549 MHz 17.869905 MHz 17.669997 MHz 15.619994 MHz 15.339905 MHz 13.380014 MHz 14.762250 MHz 14.762250 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz 8 Hz 32 Hz 16 Hz 25 Hz 3.000 kHz 3.000 kHz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -107.0 dBm -110.0 dBm -114.0 dBm -114.0 dBm -114.0 dBm -117.0 dBm -117.0 dBm -115.0 dBm	inactive active active active active active active active active active active active active	95.0 % 99.0 % 92.0 % 98.0 % 98.0 % 93.0 % 97.0 % 96.0 % 50.0 % 50.0 %	45K2 A5K2 A5K2 A5K2 A5K2 A5K2 A5K2 A5K2 A	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE MORSE ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL	4 4 4	32.8 8d 15.6 8d 9.8 8d 20.8 8d 7.2 8d 4.0 8d 16.0 8d 12.6 8d 38.0 8d		Block
ID 24613 24612 24491 24248 24241 24228 23993 23986 23983 23942 24213 24013 23946 24581	Time 13:07:14:152 13:07:12:340 13:05:44:615 13:02:50:750 13:02:45:055 13:02:45:358 13:02:45:358 13:02:45:358 13:02:45:358 13:02:45:357 13:02:45:357 13:02:45:367 14:02:45:367 14:02:45:367 15:02:45:367 15:02:45:367 15:02:45:367 15:02:45:367 15:02:45:367 15:02:45:367 15:02:45:367 15:02:45:367 15:02:45:367 15:02:45:367 15:02:45:367 15:02:45:367 15:02:45:367 15:02:45:367 15:02:45:3	12.935003 MHz 13.975000 MHz 14.945549 MHz 17.869996 MHz 17.669997 MHz 15.619994 MHz 15.439996 MHz 13.380095 MHz 13.880014 MHz 14.762250 MHz 14.029481 MHz 14.029481 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz 32 Hz 32 Hz 75 Hz 3.000 kHz 3.000 kHz 3.000 kHz 3.000 kHz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -110.0 dBm -110.0 dBm -114.0 dBm -114.0 dBm -114.0 dBm -117.0 dBm -115.0 dBm -114.0 dBm -114.0 dBm	inactive inactive active active active active active active active active active active active	95.0 % 99.0 % 92.0 % 98.0 % 98.0 % 97.0 % 96.0 % 96.0 % 50.0 % 50.0 %	45K2 45K2 45K2 45K2 45K2 45K2 45K2 45K2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE MORSE ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL HE_FAX_FM	4 4 4 2	32.8 8d 15.6 8d 9.8 8d 20.8 8d 7.2 8d 4.0 8d 16.0 8d 38.0 8d 38.0 8d 2.4000 kBd	800.0 Hz	Block
ID 24613 24612 24491 24248 24248 24248 23993 23986 23983 23984 24213 23942 24213 23946 24581 24160	Time 13:07:14:152 13:07:12:340 13:02:45:0750 13:02:45:0750 13:02:49:909 13:02:45:058 13:00:42:596 13:02:09:67 13:00:35:135 13:01:45:619 13:02:43:367 13:00:47:273 13:00:47:273 13:00:45:6865 13:04:00:366	12.935003 MHz 13.975000 MHz 14.945549 MHz 17.869996 MHz 17.869996 MHz 15.619994 MHz 15.439996 MHz 15.439996 MHz 13.880014 MHz 14.762250 MHz 16.838742 MHz 14.25250 MHz 13.49507 MHz 13.49507 MHz	65 Hz 31 Hz 41 Hz 14 Hz 32 Hz 16 Hz 25 Hz 75 Hz 3.000 kHz 3.000 kHz 5.000 kHz 5.000 kHz 5.000 kHz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -107.0 dBm -107.0 dBm -114.0 dBm -114.0 dBm -114.0 dBm -115.0 dBm -115.0 dBm -116.0 dBm -110.0 dBm	inactive inactive active active active active active active active active active active active active active active	95.0 % 95.0 % 95.0 % 98.0 % 98.0 % 93.0 % 97.0 % 96.0 % 96.0 % 50.0 % 50.0 % 50.0 % 50.0 %	45K2 45K2 45K2 45K2 45K2 45K2 45K2 45K2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL HEF_FAX_FM HE_FAX_FM	4 4 4 2 2	32.8 8d 15.6 8d 9.8 8d 20.8 8d 7.2 8d 4.0 8d 16.0 8d 38.0 8d 38.0 8d 2.4000 kBd 2.4000 kBd	800.0 Hz 800.0 Hz	Block
ID 24613 24491 24491 24248 24248 24293 23986 23983 23942 24213 24013 23946 24581 24160 23943	Time 13/07/14/152 13/07/12/340 13/02/45/350 13/02/45/358 13/02/45/358 13/02/45/358 13/02/45/358 13/02/45/358 13/02/45/351 13/02/45/351 13/02/45/357 13/02/45/367 13/06/56/865 13/04/00/366 13/01/58/497	12.935003 MHz 13.975000 MHz 14.945549 MHz 17.86996 MHz 17.669997 MHz 15.619994 MHz 15.43996 MHz 13.880014 MHz 14.762250 MHz 16.838742 MHz 14.029481 MHz 13.495607 MHz 13.49507 MHz 13.401010 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz 8 Hz 32 Hz 16 Hz 25 Hz 3.000 kHz 3.000 kHz 659 Hz 549 Hz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -110.0 dBm -110.0 dBm -114.0 dBm -114.0 dBm -114.0 dBm -115.0 dBm -115.0 dBm -116.0 dBm -119.0 dBm -119.0 dBm	inactive active	95.0 % 99.0 % 95.0 % 98.0 % 98.0 % 98.0 % 96.0 % 96.0 % 96.0 % 50.0 % 50.0 % 50.0 % 25.0 %	45K2 45K2 45K2 45K2 45K2 45K2 45K2 45K2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL HE_FAX_FM HE_FAX_FM	4 4 4 2 2 2	32.8 8d 15.6 8d 9.8 8d 20.8 8d 7.2 8d 4.0 8d 16.0 8d 12.6 8d 38.0 8d 2.4000 kBd 2.4000 kBd 2.4000 kBd	800.0 Hz 800.0 Hz 800.0 Hz	Block
ID 24613 24491 24248 24241 24228 23993 23986 23983 23942 24213 24013 23944 24213 24014 23944 24460 23943 23902	Time 13:07:14:152 13:07:12:340 13:05:44:615 13:02:50:750 13:02:49:030 13:02:49:030 13:02:45:358 13:00:42:596 13:00:35:135 13:01:45:819 13:02:59:372 13:00:47:273 13:00:47:273 13:00:47:273 13:00:47:273 13:06:56:865 13:01:58:497 13:06:58:497 13:00:73:24	12.935003 MHz 13.975000 MHz 14.945549 MHz 17.869996 MHz 17.669997 MHz 15.619994 MHz 15.439996 MHz 13.830014 MHz 14.762250 MHz 16.338742 MHz 14.2025481 MHz 13.401010 MHz 13.842002 MHz 13.341419 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz 32 Hz 32 Hz 75 Hz 3.000 kHz 3.000 kHz 3.000 kHz 3.000 kHz 3.000 kHz 559 Hz 1.718 kHz 549 Hz 571 Hz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -118.0 dBm -110.0 dBm -114.0 dBm -114.0 dBm -114.0 dBm -117.0 dBm -115.0 dBm -114.0 dBm -114.0 dBm -110.0 dBm -119.0 dBm	inactive active	95.0 % 99.0 % 95.0 % 92.0 % 98.0 % 93.0 % 96.0 % 96.0 % 96.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 %	45K2 45K2 45K2 45K2 45K2 45K2 45K2 45K2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE MORSE ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL HE_FAX_FM HE_FAX_FM HE_FAX_FM	4 4 4 2 2 2 2	32.8 8d 15.6 8d 9.8 8d 20.8 8d 7.2 8d 4.0 8d 16.0 8d 38.0 8d 38.0 8d 2.4000 k8d 2.4000 k8d 2.4000 k8d	800.0 Hz 800.0 Hz 800.0 Hz 800.0 Hz	Block
ID 24613 24491 24248 24241 24228 23993 23986 23983 23942 24213 24913 23946 24581 24160 29943 23902 23983	Time 13:07:14:152 13:07:12:240 13:05:14:615 13:02:50:750 13:02:49:909 13:02:45:358 13:02:45:365 13:02:45:367 13:02:45:367 13:02:45:367 13:02:45:367 13:00:47:273 13:02:43:367 13:00:47:273 13:02:43:367 13:00:45:845 13:04:00:366 13:04:158:497 13:00:79:224 13:00:79:2255 13:00:79:2255 13:00:79:2255 13:00:79:2255 13:00:79:2255 13:00:79:255 13:00:79:255 13:00:79:255 13:00:79:255 13:00:79:255 13:00:79:255 13:00:79:255 13:00:79:255 13:00:79:755 13:00:79:755 13:00:79:755 13:00:79:755 13:00:79:755 13:00:755 13:00:755 13:00:755 13:00:755 13:00:755 13:00:755 13:00:755 13:00:755 13:00:755 13:	12.935003 MHz 13.975000 MHz 14.945549 MHz 17.869996 MHz 17.869996 MHz 15.619994 MHz 15.439996 MHz 15.359995 MHz 13.880014 MHz 14.762250 MHz 16.838742 MHz 13.49607 MHz 13.401010 MHz 13.842007 MHz 13.51419 MHz	65 Hz 31 Hz 41 Hz 14 Hz 14 Hz 32 Hz 32 Hz 300 kHz 3.000 kHz 3.000 kHz 59 Hz 1.718 kHz 549 Hz 571 Hz 615 Hz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -110.0 dBm -110.0 dBm -114.0 dBm -114.0 dBm -114.0 dBm -115.0 dBm -115.0 dBm -115.0 dBm -110.0 dBm -110.0 dBm -110.0 dBm -111.0 dBm	inactive inactive activ	95.0 % 95.0 % 95.0 % 98.0 % 98.0 % 97.0 % 96.0 % 98.0 % 50.0 % 50.0 % 50.0 % 25.0 % 25.0 % 25.0 %	45K2 45K2 45K2 45K2 45K2 45K2 45K2 45K2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL HEF_FAX_FM HE_FAX_FM HEF_FAX_FM HEF_FAX_FM	4 4 4 2 2 2 2 2 2 2	32.8 8d 15.6 8d 9.8 8d 20.8 8d 7.2 8d 4.0 8d 16.0 8d 8.0 8d 2.400 kBd 2.4000 kBd 2.4000 kBd 2.4000 kBd 2.4000 kBd	800.0 Hz 800.0 Hz 800.0 Hz 800.0 Hz	Block
ID 24612 24491 24248 24241 24228 23993 23986 23986 23942 24213 24013 23946 24581 24581 24581 24581 24581 24581 24582 23993 23994 23993 23993 23989	Time 13:07:14:152 13:07:12:340 13:05:44:615 13:02:50.750 13:02:45:938 13:00:45:938 13:00:45:938 13:00:45:938 13:00:20:9272 13:00:47:273 13:00:47:273 13:00:47:273 13:00:47:263 13:00:47:275 13:00:47:275 13:00:47:275 13:00:47:275 13:00:47:275 13:00:47:275 13:00:47:275 13:00:47:275 13:00:47:275 13:00:47:275 13:00:47:275 13:00:475 13:00:475 13:00:475 13:00:475 13:00:475 13:00:475 13:00:475 13:00:475 13:00:475 13:00:47	12.935003 MHz 13.975000 MHz 14.945549 MHz 17.869905 MHz 17.669997 MHz 15.619994 MHz 15.619994 MHz 15.359958 MHz 13.880014 MHz 14.762250 MHz 16.838742 MHz 13.495607 MHz 13.495607 MHz 13.514819 MHz 13.514819 MHz 13.514819 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz 8 Hz 32 Hz 16 Hz 25 Hz 3.000 kHz 3.000 kHz 3.000 kHz 509 Hz 1.718 kHz 549 Hz 571 Hz 615 Hz 1.166 kHz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -118.0 dBm -118.0 dBm -114.0 dBm -114.0 dBm -114.0 dBm -115.0 dBm -115.0 dBm -114.0 dBm -110.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm	inactive active	95.0 % 99.0 % 95.0 % 92.0 % 98.0 % 93.0 % 96.0 % 96.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 %	45K2 45K2 45K2 45K2 45K2 45K2 45K2 45K2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_FM	4 4 4 2 2 2 2	32.8 8d 15.6 8d 9.8 8d 20.8 8d 7.2 8d 4.0 8d 16.0 8d 12.6 8d 12.6 8d 12.6 8d 2.4000 kBd 2.4000 kBd 2.4000 kBd 2.4000 kBd 2.4000 kBd	800.0 Hz 800.0 Hz 800.0 Hz 800.0 Hz	Block
ID 24613 24412 24248 24241 24248 23993 23986 23983 23942 24213 24013 23942 24213 24014 23943 23943 23943 23949 23893 23989 24071	Time 13:07:14:152 13:07:12:340 13:05:44:615 13:02:50:750 13:02:45:358 13:00:42:596 13:00:25:135 13:00:42:596 13:02:29:372 13:00:47:273 13:00:47:273 13:06:56:865 13:04:40:366 13:01:56:497 13:00:75:24 13:01:25:51 13:04:77:29 13:00:58:752	12.935003 MHz 13.975000 MHz 14.945549 MHz 17.669997 MHz 17.669997 MHz 15.619994 MHz 15.439996 MHz 13.880014 MHz 14.762250 MHz 14.762250 MHz 13.880014 MHz 13.495607 MHz 13.401010 MHz 13.840302 MHz 13.514819 MHz 13.480357 MHz 13.40035 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz 32 Hz 32 Hz 75 Hz 3.000 kHz 3.000 kHz 3.000 kHz 3.000 kHz 5.000 kHz 5.0000 kHz 5.000 kHz 5.000 kHz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -118.0 dBm -110.0 dBm -114.0 dBm -114.0 dBm -114.0 dBm -117.0 dBm -117.0 dBm -110.0 dBm -110.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm	inactive inactive activ	95.0 % 99.0 % 95.0 % 92.0 % 98.0 % 93.0 % 96.0 % 96.0 % 96.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 %	45K2 45K2 45K2 45K2 45K2 45K2 45K2 45K2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE MORSE ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_AM DRM Mode B	4 4 4 2 2 2 2 2 2 2	32.8 8d 15.6 8d 9.8 8d 20.8 8d 7.2 8d 4.0 8d 16.0 8d 38.0 8d 12.6 8d 38.0 8d 2.4000 kBd 2.4000 kBd 2.4000 kBd 2.4000 kBd 2.4000 kBd 3.4000 kBd 3.40000 kBd 3.40000 kBd 3.40000 kBd 3.4000 kBd 3.4000 kBd 3.400000	800.0 Hz 800.0 Hz 800.0 Hz 800.0 Hz	Block
ID 24613 24612 24491 24248 24248 24242 23993 23986 23983 23946 24213 24013 24013 24013 24013 24013 2405	Time 13:07:14:152 13:07:12:240 13:05:14:615 13:02:50:750 13:02:49:909 13:02:45:956 13:00:25:135 13:04:45:819 13:02:39:372 13:00:47:273 13:02:43:367 13:00:47:273 13:02:43:367 13:01:58:497 13:00:73:24 13:01:25:351 13:00:41:729 13:00:41:729 13:00:41:729 13:00:41:725 14:75 14:75 14:75 14:75 14:75 14:75 14:7	12.935003 MHz 13.975000 MHz 14.945549 MHz 17.869996 MHz 17.869997 MHz 15.619994 MHz 15.619994 MHz 15.359995 MHz 13.830014 MHz 13.42500 MHz 13.440101 MHz 13.440101 MHz 13.4403607 MHz 13.44037 MHz 13.482902 MHz 13.514819 MHz 13.50005 MHz 13.7803791 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz 32 Hz 32 Hz 16 Hz 25 Hz 3.000 kHz 3.000 kHz 3.000 kHz 659 Hz 1.718 kHz 549 Hz 1.718 kHz 571 Hz 615 Hz 1.166 kHz 9.727 kHz 500 Hz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -118.0 dBm -110.0 dBm -114.0 dBm -114.0 dBm -114.0 dBm -115.0 dBm -115.0 dBm -115.0 dBm -110.0 dBm -110.0 dBm -110.0 dBm -110.0 dBm -110.0 dBm -110.0 dBm -110.0 dBm	inactive inactive activ	95.0 % 99.0 % 95.0 % 98.0 % 98.0 % 97.0 % 96.0 % 96.0 % 50.0 % 50.0 % 50.0 % 25.0 % 25.0 % 50.0 % 25.0 % 50.0 % 100.0 % 100.0 % 91.0 %	45k2 A5k2 A5k2 A5k2 A5k2 A5k2 A5k2 A5k2 A	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_FM	4 4 4 2 2 2 2 2 2 2	32.8 8d 15.6 8d 9.8 8d 20.8 8d 20.8 8d 10.0 8d 16.0 8d 12.6 8d 38.0 8d 2.4000 kBd 2.4000 kBd 2.4000 kBd 2.4000 kBd 31.1 8d	800.0 Hz 800.0 Hz 800.0 Hz 800.0 Hz	Block
ID 24613 24512 24491 24248 24241 24248 23993 23986 23983 23942 24213 24013 23942 24213 24014 23943 23943 23949 23899 24071	Time 13:07:14:152 13:07:12:340 13:05:44:615 13:02:50:750 13:02:45:358 13:00:42:596 13:00:25:135 13:00:42:596 13:02:29:372 13:00:47:273 13:00:47:273 13:06:56:865 13:04:40:366 13:01:56:497 13:00:75:24 13:01:25:51 13:04:77:29 13:00:58:752	12.935003 MHz 13.975000 MHz 14.945549 MHz 17.669997 MHz 17.669997 MHz 15.619994 MHz 15.439996 MHz 13.880014 MHz 14.762250 MHz 14.762250 MHz 13.880014 MHz 13.495607 MHz 13.401010 MHz 13.840302 MHz 13.514819 MHz 13.480357 MHz 13.40035 MHz	65 Hz 31 Hz 19 Hz 41 Hz 14 Hz 32 Hz 32 Hz 75 Hz 3.000 kHz 3.000 kHz 3.000 kHz 3.000 kHz 5.000 kHz 5.0000 kHz 5.000 kHz 5.000 kHz	-124.0 dBm -120.0 dBm -118.0 dBm -118.0 dBm -118.0 dBm -110.0 dBm -114.0 dBm -114.0 dBm -114.0 dBm -117.0 dBm -117.0 dBm -110.0 dBm -110.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm	inactive inactive activ	95.0 % 99.0 % 95.0 % 92.0 % 98.0 % 93.0 % 96.0 % 96.0 % 96.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 % 50.0 %	45K2 45K2 45K2 45K2 45K2 45K2 45K2 45K2	DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT	MORSE MORSE MORSE MORSE MORSE MORSE MORSE MORSE ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL ICAO_SELCAL HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_FM HE_FAX_AM DRM Mode B	4 4 4 2 2 2 2 2 2 2	32.8 8d 15.6 8d 9.8 8d 20.8 8d 7.2 8d 4.0 8d 16.0 8d 38.0 8d 12.6 8d 38.0 8d 2.4000 kBd 2.4000 kBd 2.4000 kBd 2.4000 kBd 2.4000 kBd 3.4000 kBd 3.40000 kBd 3.40000 kBd 3.40000 kBd 3.4000 kBd 3.4000 kBd 3.400000	800.0 Hz 800.0 Hz 800.0 Hz 800.0 Hz	Block

Fully automatic processing workflow


The fully automatic processing of detected signals reduces the workload of a radio monitoring operator. Mundane jobs such as waiting for a certain signal to reappear can be automated, freeing up time for other analysis tasks. Routine tasks such as monitoring a certain frequency range and recording particular known or unknown signals can also be automated. Again, this makes more time available for the operator to concentrate on more important or demanding analysis tasks.

Fully automatic signal processing (e.g. content extraction, recording, notification) with user-defined rules. The action list triggered by certain information is consolidated and displayed. In this example, digital IF recording will be triggered automatically once the TETRA signal is detected. The target signal is replayed to obtain the spectrum view, digital demodulation view (constellation diagram) and decoded TETRA signal with transmission details.



Extensive transmission system library

An extensive library of transmission systems, demodulators and decoders (currently over 150 in total) enables content extraction (i.e. listening to audio, obtaining decoded texts or image files) of numerous transmission methods, including TETRA, dPMR, PACTOR III, CODAN 3012, CLOVER signals, etc.

Content recovery from CODAN 3012 (above) and METEOSAT Wefax signals (below).

Open interfaces

To ensure flexibility, the open programming and extensibility interfaces provide the capability to integrate userspecific modules for signal processing (receiver driver for the third-party receiver, demodulator, decoder, transmission system). Plus, if users have their own GUI, the Rohde & Schwarz solution can be integrated into their platform. As a result, users can independently deploy their own expertise in solutions. The signal analysis solution has an open, documented application programming interface (API) for this purpose.

Open interface to integrate customer-developed signal processing modules such as demodulators, decoders and receiver drivers. The C++ interface for integrating user modules, a detailed and documented integration manual, and training packages for knowledge transfer are provided.

```
//! Create and send a "transmission system result" frame (text message)
int dd_send_text_data(typDDParams *ptrTypDDParams,
                                         typOwnParams *ptrTypOwnParams,
                                         ptypBIGTIME bigtimeTime,
                                         void *voidPtrParent)
{
   char strMsgBuf[80];
   unsigned int uMsgLen, uMsgLen32Bit, uFrameSize;
   char *cDest;
   typTRANSMISSION_SYSTEM_RESULT_FRAME *ptrTextDataFrame;
   // ----- Prepare data -----
   uMsgLen = sprintf(strMsgBuf, "Configuring. Audio: %s Decimation step: %3u",
       (ptrTypDDParams->eAudioOnOff == GX AUDIO ON) ? "On " : "Off",
       ptrTypDDParams->uDecimation);
   // Length of the text message in bytes after 32-bit alignment
   uMsgLen32Bit = uMsgLen/pdemSIZEOF(ptypUINT);
 if(uMsgLen % pdemSIZEOF(ptypUINT))
   uMsgLen32Bit++; // there a still less than 4 chars available - you need one more 32 Bit Word
```

Regional contact

- Lurope, Africa, Middle East | +49 89 4129 12345 customersupport@rohde-schwarz.com
- North America | 1 888 TEST RSA (1 888 837 87 72) customer.support@rsa.rohde-schwarz.com
- Latin America | +1 410 910 79 88 customersupport.la@rohde-schwarz.com
- Asia Pacific | +65 65 13 04 88
 customersupport.asia@rohde-schwarz.com
- China | +86 800 810 8228/+86 400 650 5896 customersupport.china@rohde-schwarz.com

www.rohde-schwarz.com

R&S® is a registered trademark of Rohde&Schwarz GmbH&Co. KG Trade names are trademarks of the owners PD 3607.0198.62 | Version 02.00 | October 2015 (sk) Turn your goals into reality © 2014 - 2015 Rohde&Schwarz GmbH&Co. KG 81671 Munich, Germany | Subject to change

