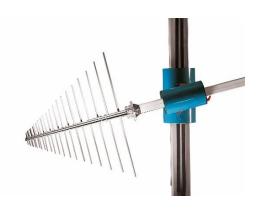
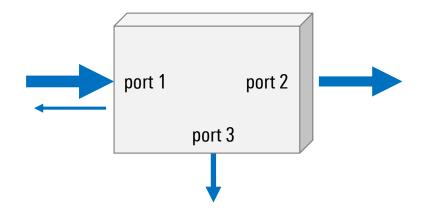

Sパラメータの基礎

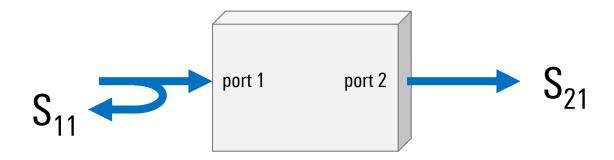
ROHDE&SCHWARZ

Make ideas real

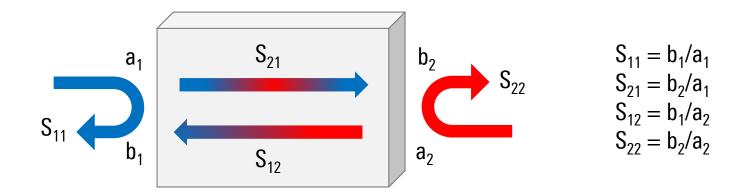

ネットワーク(回路網)とは

- ▶ ネットワークは、1つ以上のポートを持つデバイス
- ▶ 各ポートは、RF信号を伝送、吸収、および反射する
- ▶ 例:
 - 1ポート:アンテナ、ダミーロード
 - 2ポート:フィルタ、アンプ
 - 3ポート:方向性結合器、ミキサ

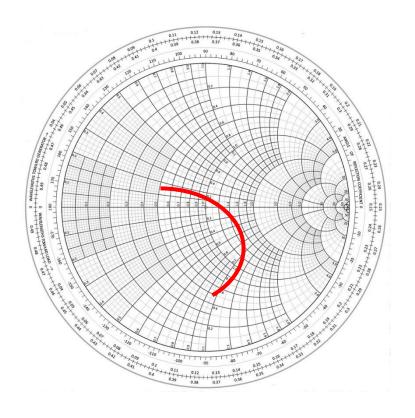



ネットワークの解析

- ▶ ネットワークは次の方法で解析できる
 - 特定のポートにRF信号を印加する
 - 出力されたRF信号のレベルを測定する
 - そのポートで(反射)
 - 他のポートで
- ▶ 通常は、一度に1つのポートに1つの信号 のみが印加される
- ▶ 通常、ある範囲の周波数で測定
- ▶ ネットワークは通常、ネットワーク・ア ナライザと呼ばれる電子計測器を使用し て解析される


Sパラメータとは

- ▶ Sパラメータは、これらの測定値を表す最も一般的な方法である
- ▶ 文字「S」と下付き文字のペア (S_{xv}) を使用して名付けられる
 - 最初の添え字:エネルギーが出力されるポート(出力ポート)
 - 2番目の添え字:エネルギーが印加されるポート(入力ポート)


例: 2ポートネットワーク

▶ $2 \, \pi$ - $1 \, \pi$ - 1

Sパラメータの詳細

- ► Sパラメータは、N 行 N 列の行列として表現 できる
 - N = ポート数
- ▶ Sパラメータは次の複素数
 - 振幅
 - 位相
- ▶ 反射係数 (S_{xx}) をスミスチャートにプロット できる
- ► Sパラメータをカスケード接続して、システム全体の応答を予測可能

Sパラメータを共通名にマッピングする

- ▶ 反射係数
 - S11
 - S22
- ▶ 伝送係数
 - S21 ゲインまたはロス
 - S12 リバースアイソレーション


 $S_{12} \approx 0$ (リバースアイソレーション)

S₂₁ > 0 (ゲイン)

まとめ

- ▶ ネットワークは、1 つ以上のポートを持つデバイスである- 各ポートは、RF信号を反射、伝送、あるいは吸収できる
- ▶ 1つのポートに電力を印加し、そのポートと他のポートに現れる電力を測定することによって測定
- ► Sパラメータはネットワークを定量化する標準的な方法 S_{xv} : x は出力ポート、y は入力ポート
- ▶ Sパラメータは複素数値
 - 値は周波数によって変化する
- ▶ 多くのSパラメータには一般的な名前がある
- ▶ ネットワークは通常、ネットワーク・アナライザを使用して 解析される

