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Motivation

 Conflicting objectives

 Radar: Signals with high bandwidth for fine resolution

 Communications: Signals with small bandwidth to save resources

 Issue with high-bandwidth signal

 Information content of echo in fact limited and wasteful use of resources

 Straightforward approach not feasible for a communication centric JCAS system

Is there a way to create a signal with a high bandwidth while keeping the 

occupied spectrum as limited as possible?

 Previously approach for high-resolution Radar based on gapped spectrum introduced in 

Guha et al. (2023)

 Transition of this idea to JCAS based on multi-carrier signals (here: OFDM) 
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Introduction
Concepts form communications and radar

Let’s address the elephant in the room: Spectrum is a scarce resource!

 Circumvent this problem by coexistence, Cognitive Radio, JCAS / ISAC approaches

 General problem: Resolution vs. available spectrum

Relevant concepts from communications and Radar

 From communications

 Application of OFDM signals for sensing, e.g., Sturm et al. (2009)

 (Communication centric) JCAS for additional sensing for a given communication signal, e.g., Zhang et al (2022)

 From Radar and Compressed Sensing

 Approaches for high-resolution radar, e.g., Herman & Strohmer (2009)

 Approaches for fusion of disjoint bands to form a wideband signal from narrow sub-band in Guha et al. (2022) 
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Signal Model I
Preliminaries

Basic assumption on system structure

 Communication centric system design 

 Mono-static sensing

 Multi-carrier system to facilitate spectrum allocation 

Basic assumptions on signal

 Transceivers A and B use CP-OFDM for communication and sensing

 Signal generation in the digital domain

 DA conversion good signal reproduction assumed

 Multipath AWGN channel

 Backscattered signal only contains a few strong scatterers (short to medium distance)

 ToF of backscattered signal is within the cyclic prefix of the OFDM-symbol

 SISO setup, so far only range measurements no angle information
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Signal Model II
Structure of Sensing Matrix

 Rx-signal given convolution of range profile (modelled as weighted sum of time-

shifted Dirac pulses) with Tx-signal

 Fourier representation of Rx-signal in base-band given by

ℱ ���� � � � 	
ℱ ���� �
�������
��������
�


��
where

 ���� is the received time domain base-band signal

 ���� is the transmitted time domain base-band signal

 	
 is the complex scattering coefficient (amplitude and phase) 

 �
 is the round-trip time delay of scatterer � ; 1 � � � �
 ��� is the carrier frequency
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Non-contiguous Spectrum Assignment I
Some Signal Properties

Spectrum properties of OFDM signal 

 Occupation of spectrum by carriers in contiguous way

 Narrow spectrum

Resolution properties

 Nominal range resolution given by Δ� ∝ "
�#

 Further decrease of resolution due to shape of ambiguity function

Compressed Sensing properties

 Depending on problem definition 

 Decrease of �$ for fixed number of measurements %
 Decrease of number of measurements % for fixed �$ (e.g., random selection) 

 Decrease of �$ nevertheless impacted by increasing coherence
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Matrix representation in frequency domain 

for arbitrary range grid:
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Non-contiguous Spectrum Assignment II
Gapped Carrier Grid

 Option left: Increased bandwidth for decrease of �7
 Straightforward idea: Increase number of occupied carriers or increase sub-carrier bandwidth

 Problem: Scarce spectrum even more congested, other users are denied from accessing the 

spectrum to communicate

Solution

 Random distribution of required sub-carriers along the usable spectrum

 Only a minimal amount of the spectrum effectively used

 Leaving gaps (big enough) for other users to communicate  

 Choose 8 sub-carriers out of 9 total available sub-carriers along the available spectrum

 ��:  ; ; � 1, … , 8 with >7 ∈ 1, … , 9
 Yielding:

 Effective communication bandwidth: @Comm,eff � 8Δ�
 Synthetic sensing bandwidth : @Sens,eff      �   ��D  4 ��E
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Simulations I
Setup

Signal Setup

 Frequency range 2 of 5G, n257 (26.5 – 29.5 GHz) (exemplarily)

 QPSK modulation, amplitude 1

 200 (100) carriers with ∆� � 15 kHz out of 
KL
∆� � 33334 occupied

 ���� by FFT over whole BW and cyclic prefix

 ��� by convolution of ��� with range profile

 Noise with respect to energy of ���

CS Setup

 Sensing matrix set according to randomly chosen carrier

 Range gate width of 0.3 m / 0.2997 m with a total of 1000 positions 

 7 objects >> sparsity (�) is 7

 Algorithms: OMP (needs a-priori specification of �), BLASSO

O P ∆Q ∆R �
1000 200 / 100 15 kHz 0.3 m / 

0.2997 m
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Simulations II
Results I – Basis Mismatch

 Object grid given by 
KL ∆�⁄ "]

� � 0.2997 m
 Range gate width of 0.3 m not aligned with object grid

 Objects #4, #5 most severe impacted by deviation (left diagram)

 Ripple of BLASSO due to estimation of deviations of objects from grid 

not due to noise (cf. left diagram for % � 200 and % � 100)

 Estimation exact for aligned grid (only as theoretical reference)

ground 0.3 m 0.2997 m

#1 34.764 m 115.88 116

#2 47.951 m 159.84 160

#3 63.236 m 210.79 211

#4 145.353 m 484.51 485

#5 162.435 m 541.45 542

#6 197.8 m 659.33 660

#7 210.087 m 700,29 701
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Consensus-based time synchronization I
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Basic Algorithm

 For a JCS network individual sensors (=agents) need to be synchronized

 Hardware solutions can be ruled out due to size restrictions

 Agents need to agree on same time basis -> consensus problem

 Current CBTS algorithms assume local clocks to be time-invariant

 In reality LOs always contain some kind of time variation, e.g. phase noise

 Idea: Use dynamic consensus on local clocks �7 c = d7 c c e @7 c
 Create global, common clock: �̅ c � dg7�7 c e @h7

 with some compensation factors dg7 and @h7
 c
: global time basis

 Local estimation of common clock �̅h7 c
 � (7
i�j c
k�

 Neighbour states: (�
l

 Local states: (�
l

 m7n � �
o: k� if (n

l  neighbor or local, else 0

 Δ p : nrs-order difference of local clock �7

(7
i�j c
k� � � m7n(n

� c
 e Δ � �7 c

p

n��

(7
i�j c
k� � � m7n

p

n��
(n

� c
 e (7
i�j c
k�

dg7 c
k � (7
i�j c
k�

Δ � �7 c

@h7 c
k � (7

i�j c
k� 4 dg7 c
k �7 c
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Consensus-based time synchronization II
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Simulation

 For a JCS network individual sensors (=agents) need to be synchronized

 Hardware solutions can be ruled out due to size restrictions

 Agents need to agree on same time basis -> consensus problem

 Current CBTS algorithms assume local clocks to be time-invariant

 In reality LOs always contain some kind of time variation, e.g. phase noise

 Idea: Use dynamic consensus on local clocks �7 c = d7 c c e @7 c
 Create global, common clock: �̅ c � dg7�7 c e @h7

 with some compensation factors dg7 and @h7
 Problem: Global timing by c


 Not realistic in practice

 Asynchronous operation more relevant

 Consensurs not absoulte but relative
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System and Antenna Requirements
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Antenna

 (Ultra-) massive MIMO

 High directivity

 Multi-beam possible

 Should be applicable to high bandwidths

 Reconfigurable Intelligent Surfaces (RIS)

 Controlled beam steering for distributed 

sensing

 Metasurfaces

 Reflect arrays with phase shifters

System

 System required to operate in full-duplex mode

 Improved hardware for good Tx/Rx isolation 

 Cross-talk considered object at range 0

-> removed in post processing or by filter

 Implement self-interference cancellation 

methods

 Alternative: Co-located Rx that acts as sniffer

Components

 Highly integrated T/R modules

 Mixed-signal design

 e.g. SiGe

 CMOS compatible process

 Heterointegration

 Graphene

 Cheap thin-film process

 Substrate independent process

 Increased computational load of FFT due to 

wider spectrum

 Multi-band reconfigurable filters

 I. F. Akyildiz et al., IEEE Access 8 (2020)

 G. vom Bögel, M. Weimer, R. Thill et al., WSA & SCC 2023

 Z. Wang  et al., Adv. Electron. Mater. 7 (2021)
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Summary & Outlook

Summary

 Problem: „Good“ resolution needs bandwidth, which is wasteful considering the amount of information

 Previous work showed feasibility of gapped spectrum for sensing

 Sub-carrier structure of OFDM facilitates gapped spectrum based on choice of carrier

 Random carrier selection yields CS problem based on random selection of rows of orthogonal basis matrix

 Effective bandwidth 

 Communication: @wxnn � 8Δ�
 Sensing:  @yzp� � ��{ 4 ��E with ��: , ; � 1, … , 8, >7 ∈ |1, … , 9}

Future work

 Implementation of estimation using sparse FFT

 Implement asynchronous dynamic CBTS

 Development of reconfigurable hardware platform for JCS

 Integration of RIS with Graphene components and SiGe mixed-signal components
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Thank you for your attention!
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