BEST PRACTICES ON HIGH VOLTAGE AND CURRENT PROBING

Gabriel Rojas Application Engineer Power Electronics

ROHDE&SCHWARZ

Make ideas real

TESTING THE DESIGN

- ► Verify sub-circuits and switching times of the transistors
- Switching losses
- ► Characterization of passive components
- Stability
- ► Efficiency
- ► Transient response, start-up, shut down
- ► Voltage ripple
- ► Electromagnetic compatibility

MAIN CHALLENGES

- ► High frequencies: Wide bandgap materials
- Dynamic range: Operation in wide ranges of current and voltages
- Alignment of current and voltage signals
- ► Noise: DC-DC converters can produce noise that can interfere with measurements
- Dynamic performance: Rapid changes in output voltage and current
- Accessibility to the DUT

TYPICAL MEASUREMENT SCENARIOS

INPUT AND OUTPUT SIGNALS

Efficiency, power-up and power-down sequences

INPUT AND OUTPUT SIGNALS

- ▶ It is necessary to measure the voltage and current and the input and the output
- ► A typical configuration would be:

7 Rohde & Schwarz 4/12/2023 Best practices on high voltage and current probing

Typical measurement scenarios INPUT AND OUTPUT SIGNALS PROBES

The specifications of the probes depend on the voltage and current ratings, as well as the required bandwidth.

► Voltage probes:

- The rated voltage of the probe should be greater than the voltage to be measured at the input and output terminals.
- In general, a high voltage differential probe is recommended. Especially when measuring AC input signals.

Current probes:

- Clamp type probes are recommended when the input and output cables are accessible.

Typical measurement scenarios

SWITCHING STAGE BEST PRACTICE MEASUREMENTS

- ► As a rule of thumb, it should be checked:
 - $\checkmark \ \ V_{GS} \text{ and } V_{DS}$
 - ✓ Rise times and fall times (10/90 or 20/80)
 - ✓ Overshoot, ringing
 - General timing of high- and low-side switch (syncronous converter)
 - ✓ Robustness test

Typical measurement scenarios SWITCHING STAGE TRANSISTOR

The characterization of a transistor requires three main measurements:

► Drain to source voltage:

- Depending on the side it could be a floating or non-floating measurement
- Typically high voltages

► Gate to source voltage:

- Floating measurement
- Voltages in the range of -20 V to 20 V
- High common mode voltage in the high-side transistor

Drain to source current:

- Capability of measuring AC currents
- 9 Rohde & Schwarz 4/12/2023 Best practices on high voltage and current probing

Typical measurement scenarios SWITCHING STAGE BANDWIDTH

- ► Among the greatest challenges in testing the switching stage of the converters are the wide bandgap materials like SiC and GaN. Their faster switching times condition the bandwidth.
- Oscilloscope and probes must be chosen accordingly.

Example: If a semiconductor has a rise time of 4 ns, a minimum bandwidth of 87.5 MHz is required.

- Semiconductor switching losses play a key role in the design of power converters and it is important to quantify them.
- The double pulse test can deliver switching characteristics for all operating modes of a hardswitching power converter.
- ► Switching times and switching energies can be measured for high and low side devices.

Typical measurement scenarios SWITCHING STAGE DOUBLE PULSE TEST

Voltage measurement

- ► Floating setups allow the usage of passive probes
- Grounded setups require the use of high voltage differential probes for the gate to source voltage measurement.
- Broadband differential probes can also be used depending on the voltage level to be measured.
- ► The rise time of the V_{DS} determines the required bandwidth

Typical measurement scenarios SWITCHING STAGE DOUBLE PULSE TEST

Current measurement

- Choosing the right current probe is a compromise between: current range, bandwidth, accessibility and the ability to measure DC currents.
- In general, magnetic core clamp-type probes are not used due to the impossibility of reaching the test point.
- ► Alternatives:

AC-DC AND MULTI-STAGE DC-DC CONVERTERS

- In AC-DC (e.g. boost PFC) and multi-stage converters there are multiple test points that have to be measured simultaneously.
- This is done to verify the design of the different elements in the circuit, such as: filter, rectifier, switching converter, etc.
- ▶ In general, high voltage probes are used (passive or differential).

INDUCTOR CURRENT

- It is important to determine if the inductor is suitable for the converter or if saturation will occur during the operation.
- The inductor current I_L is a common measurement that is used to:
 - Determine conduction mode of the converter
 - Current zero cross detection
 - Evaluate the energy stored in the inductor
 - Characterize the inductor: Resistance and saturation

Typical measurement scenarios INDUCTOR CURRENT HOW TO MEASURE IT?

There are two ways of measuring the inductor current:

- ► Use an auxiliary wire in series with the inductor.
 - Desolder with hot air to detach the one of the terminals of the inductor
 - Use a small cable to connect in series the inductor.
 - The cable should be long enough to attach a clamp-type current probe.

Use a shunt resistor

- It is an alternative to the current probe but not recommendable.
- Switching noise can easily couple into the voltage measurement via the shunt resistor.

FLOATING MEASUREMENT TECHNIQUES

Typical measurement scenarios

FLOATING MEASUREMENT TECHNIQUES

Floating Scope using isolating Transformer:

- Oscilloscope Ground provided by DUT and can differ from 0 V.
- All grounds are at the same level.
- Potential risk for electrical shock when touching the system.
- Stray capacitances and inductances of the setup can
 influence measurement results

2 Single-ended Probes + Math-function:

- Scope inputs can be overdriven easily.illoscope
- Vertical resolution is limited by offset range and divider ratio of the probe.
- Probes must be compensated against each other to achieve good results.
- In most cases: 2 probes of the same type have to be used, otherwise no compensation possible.

High-Voltage Differential Probe:

- Can accurately measure small differential voltages in the presence of large common-mode voltages up to thousands of volt.
- High input impedance on both inputs to minimize loading and measurement errors.
- Bandwidth limited to typ. 200 MHz

Isolated Channel oscilloscope:

- Isolated input has no direct electrical connection to earth ground.
- Great DC & low frequency CMRR.
- Bandwidth up to 500 MHz.
- Isolated probes are not true differential

Typical measurement scenarios

FLOATING MEASUREMENT TECHNIQUES

Floating Scope using isolating Transformer:

- Oscilloscope Ground provided by DUT and can differ from 0 V.
- All grounds are at the same levy
- Potential risk for electrical store ouching the system.
- Stray capacitances ar
 Ces of the setup can
 influence measurer
- 2 Single-end + Math-function:
- Scope inp
 Scope inp
 Scope inp
- Vertice is limited by offset range and divider ratio
- Probe st be compensated against each other to achieve good results.
- In most cases: 2 probes of the same type have to be used, otherwise no compensation possible.

High-Voltage Differential Probe:

- Can accurately measure small differential voltages in the presence of large common-mode voltages up to thousands of volt.
- High input impedance on both inputs to minimize loading and measurement errors.
- Bandwidth limited to typ. 200 MHz

Isolated Channel oscilloscope:

- Isolated input has no direct electrical connection to earth ground.
- Great DC & low frequency CMRR.
- Bandwidth up to 500 MHz.
- Isolated probes are not true differential

FLOATING MEASUREMENT TECHNIQUES FLOATING SCOPE + HV DIFFERENTIAL PROBES

- A common practice is to use HV differential probes while the oscilloscope is floating by means of an isolating transformer.
- ► In this case, there is not a direct connection to the reference potential and the scope looks for its reference potential over the high impedance input of the HV differential probe.
- When using more than one HV differential probe, the floating reference voltage is a combination of the common mode voltage of the probes.
- ► The CMRR is affected and the overall performance of the probes may get worse

DE-SKEW

- Voltage and current probes have different rise times and propagation delays
- For measurements that require both signals (switching losses, efficiency, start-up) is essential to compensate the time delay.
- A deskew fixture can be used to align in time the signals.
 - It is limited to the rise time.
 - It can only work with a clamp-type probe that fits in the board.

DE-SKEW

- For probes where the use of a deskew fixture is not possible, a manual deskew is required:
 - The point of alignment depends on the application
 - If the signals do not have similar shapes, the process is not straightforward.
 - This process is uncertain and requires repetitions

No or not enough deskew Wrong : measured value too low Too much deskew Wrong switching* measured value too high Correct deskew witching: measured value correct Good

PARASITICS

... internal parasitics are silicon based, normally capacitances of the substrate ... external parasitics are formed due to bonding interconnections and probing

PARASITICS

- ► WBG transistors are very sensitive to parasitic inductance due to their switching speed.
- At such frequencies, it is difficult to measure the signals waveforms without adding spurious noise to the DUT.
- Thus, it is important to minimize the parasitics when measuring the different signals in the circuit.

Parasitics in passive components must be considered when testing a design based on WBG semiconductors.

Probing

CONNECTIONS

► Leads and clips also have an influence in the measurement.

TEST POINTS

- ► Test points are used to validate the design.
- Is a small area of exposed copper where a probe can be connected.
- ► The most common signals that have test points are:
 - Power supply rails
 - Ground
 - Communication buses
- ► Too many test points:
 - Could accidentally short to another test point
 - Perforate power and ground planes
 - Degrade signal integrity
 - Contribute to EMC issues

ACCESIBILITY PACKAGING

- Switching speed of WBG semiconductors limit the performance of the conventional packages due to parasitic capacitance and inductance.
- These parasitic components have a direct influence in overvoltage, EMI and in the measurements.
- State-of-the-art integrated circuits (ICs) that use SiC and GaN are capable of integrating half-bridge, full-bridge, push-pull and other architectures into a single package.
- This packaging limit the number of test points in the switching stage. It is not possible to measure the internal signals (Vgs, Id) in such packages.

 $^{>}$ 30 $\,$ Rohde & Schwarz $\,$ 4/12/2023 $\,$ Best practices on high voltage and current probing

Input Impedanze RT-ZHD (single ended)

RT-ZHD15/16

Frequency [Hz]

HOW TO MEASURE CURRENTS?

CURRENT MEASUREMENTS

- The selection of a current measurement technique is a challenging task and several aspects must be taken into account:
 - Bandwidth
 - Sensitivity
 - Maximum current
 - Accessibility to the test point
 - Saturation
 - Insertion impedance
 - Positioning
- This selection is a compromise and highly depends on the application

INSERTION IMPEDANCE

- It refers to the equivalent impedance that appears in series to the circuit (conductor under test) when it is being probed.
- ► The insertion impedance can be calculated as:

$$Z_{ins} = Z_{refl} + Z_{intr}$$

Where Z_{refl} is the secondary impedance reflected into the primary by transformer action and Z_{intr} is the intrusion impedance originated by the core material of the current probe.

$$Z_{refl} = \frac{(\omega M)^2}{R + j\omega L}, \ Z_{intr} = j\omega \frac{L}{N^2} - j\omega \frac{L_0}{N^2}$$

► At lower frequencies, the core losses are negligible.

POSITIONING

Orientation of current

- ► The orientation of the probe matters.
- ► The current probe is designed to work as a coupled transformer where the primary is the wire and the secondary the probe. Thus, it expects the current to be flowing in a specific direction.

- An incorrect orientation translates into an inverse output voltage of the current probe.
- Probes are calibrated considering a single current direction.

\rightarrow achieve best possible accuracy, and reproducibility.

Cable position

positioning of the conductor.

The clamp-type current probes exhibit dependency on the

It should be placed in the center of the aperture since the

characterization of the probe is done in this position.

How to measure currents? **POSITIONING COUPLING CAPACITANCES**

- Besides the conductor position, the relative position of the current probe is also important.
- When the probe is close to a component, it will suffer from electromagnetic interference due to capacitive coupling.
- The distance to nearby components should be kept to a minimum.

Oyarbide (2017). New Current Measurement Procedure Using a Conventional Rogowski Transducer for the Analysis of Switching Transients in Transistors.

NONLINEARITY OF CURRENT MEASUREMENTS HIGH CURRENTS AT HIGH FREQUENCIES

- The linear operation of a probe is given by the ampsecond product, which is defined as the average current multiplied by the pulse width.
- When the maximum value is reached, the probe goes into saturation and the core is unable to handle the induced flux B.
- The $Z_T I = U$ equation is no longer valid and the peaks of the waveform are not displayed in the oscilloscope.
- The amp-second product evidences the dependence of the core saturation on the frequency. Thus it is important to observe the derating curve in the manufacturers datasheet.

TEMPERATURE

- ▶ One of the potential problems when using the clamp-type probes is the damage from self-heating.
- ► The maximum rated current assumes sine-wave input under standard conditions.
- For frequencies higher than 1 kHz the temperature in the sensor head rises because of the excitation loss that cannot be prevented.
- The temperature also increases when the measured current waveform contains other frequency components

COMMONLY USED PROBES

Current transformer

- It produces AC current in the secondary, which is proportional to the current in the primary.
- ► The number of turns is designed based on the current levels expected to be measured.
- ► It can only measure AC current.
- CTs reduce currents in a high voltage environment in a way that is safe for measuring equipment.
- Saturation at low frequencies

AC/DC zero flux + Hall element

- It combines the CT and hall effect sensors in order to measure AC and DC currents.
- ▶ It is characterized by the high sensitivity and low noise.
- Especially designed for oscilloscopes, where small current waveforms must be observed.
- There is an offset drift when the temperature changes.
- ► High bandwidth: can be greater than 100 MHz.

COMMONLY USED PROBES

Rogowski coil

- This type of sensors do not include a magnetic core, which allows:
 - Low insertion impedance
 - No saturation
 - Lack of heat generation
- ► Thus, it is suitable for high currents
- ► It can only measure AC currents
- Bandwidth limited to 50 MHz. The integrator and the length of the cable influence this limit.

Shunt resistor

► It applies Ohm's law to measure the current.

$$R = \frac{V}{I}$$

- ► The shunt is a (low-value) resistor that it is connected in series in order to carry the current of interest.
- ► It can measure AC and DC currents.
- Ideal for SUTs with no clamp accessibility. but it requires a differential probe

COMMONLY USED PROBES

Sensor	Туре	DC?	Bandwidth	Saturation	Position	Intrusive	Current level	Thermal drift?	Precision	Physical principle
Current transformer	Fixed / Clamp	No	< 100 kHz	Yes	Important	Yes	~ kAmps	No	Average	Faraday's Iaw
Zero flux + Hall	Clamp	Yes	< 120 MHz	Yes	Very important	Yes	< 100 A	Yes	Good	Magnetic field
CT + Fluxgate	Clamp	Yes	< 3 MHz	Yes	Important	Yes	< 1 kA (@ 200 kHz)	No	Excellent	Magnetic field
Rogowski coil	Clamp	No	< 50 MHz	No	Very important	No	< 4 kA	No	Average	Faraday's Iaw
Shunt resistor	Fixed	Yes	< 1 GHz	No	Does not matter	Yes	< 200 A	Yes	Good	Ohm's Iaw

THANK YOU FOR YOUR ATTENTION

ROHDE&SCHWARZ

Make ideas real

